upoints
Release 0.12.2

Jul 25, 2018

Contents

1 Contents

1.1 Geolocation and path cross
1.2 The MERLIN system . .
1.3 Cities and cities.py
1.4 Pythonsonaplane
1.5 Trigpointing and point.py

1.6 xearth and path cross . . .
1.7 edist.
1.8 API documentation
1.9 Glossary
1.10 Release HOWTO
.11 Todo

2 Indices and tables

Python Module Index

.. 15
.. 16

upoints, Release 0.12.2

Warning: At this point upoints only exists to assist the users who have been using it for years, I absolutely do

not recommend its use to new users.

upointsisacollection of GPL v3 licensed modules for working with points on Earth, or other near spherical objects.
It allows you to calculate the distance and bearings between points, mangle xearth/xplanet data files, work with online

UK trigpoint databases, NOAA’s weather station database and other such location databases.
Previous versions of upoints were called earth_distance, but the name was changed as it no longer reflected

the majority of uses the packages was targeted at.

Contents

http://www.gnu.org/licenses/
http://hewgill.com/xearth/original/
http://xplanet.sourceforge.net/
http://weather.noaa.gov/

upoints, Release 0.12.2

2 Contents

CHAPTER 1

Contents

1.1 Geolocation and path cross

Spurred on by Seemant’s voyage in to geoip for deciding on the location of users writing comments on his website 1
decided to have a look in to MaxMind’s library with the intent of using it in a semi-private pathcross-type application.
Unfortunately, it turns out it isn’t all that simple but there is some fun to be had along the way.

If, like Seemant, you’re looking to simply infer the country a specific IP address originates from then the accuracy
of the results from the geoip library are generally quite good. Out of the fifty requests I tried the MaxMind database
managed to return the correct results for all but three, and each of those incorrect results are because of interesting
proxying games being played by their service providers. The accuracy would likely be much higher than 94% using
a more random selection of IPs, but I went out of my way to find ones I expected to return incorrect data(large
multinational ISPs, mobile providers and backbone infrastructure owners). That being said, the accuracy of the results
drops considerably as you zoom in from country-wide geolocation.

My initial idea had been to use the city data to populate an automatically updating database that could be queried to
find people in the local area'. Much like some of those oh-so-cool Web 2.0 buzzword laden sites do but without the
manual updating, Javascript, lack of privacy and continual spam. Me and a few friends already do such a thing using
our published hCalendar entries, a heap of nifty Haskell code and some dirty hack infested XSLT. It works well, but it
could do so much better given more data. Unfortunately, the geoip solution wouldn’t work as I envisaged because the
precision of the city data isn’t what I naively hoped for.

All that aside, and with the failed plan in tatters on the floor, it did leave a few interesting artefacts to be mulled over
instead of doing Real Work™.

1.1.1 How inaccurate?

Using MaxMind’s Locate my IP service, which presumably queries their largest and most current database to attract
customers, I’m reported as being:

! By “automatically updating” I mean simply a ping-and-forget service that listens for a user ID and location and updates the database. My test
code was a simple five line Python script, it literally reads a configuration file for the user ID and pings my server.

http://kulleen.org/seemant/blog/2007/apr/16/building-my-django-weblog-part3/
http://www.maxmind.com/geoip/api/c.shtml
http://www.w3.org/wiki/PathCross
http://www.maxmind.com/app/city
http://microformats.org/wiki/hcalendar
http://www.maxmind.com/app/locate_my_ip
http://www.python.org/

upoints, Release 0.12.2

Attribute Data

Your IP Address 62.249.253.214
Countries United Kingdom

Region 02 (Telford and Wrekin)
Global Cities Telford
Latitude/Longitude | 52.6333/-2.5000

ISP Telford

Organization Entanet International Ltd
Netspeed Dialup

Domain Name entanet.co.uk

Okay, so at the moment of that query it gets the correct country, net speed, organisation(my ISP UKFSN resells Entanet
service) but that is it”. Not that we really should be expecting any great accuracy with the data, because of the way IPs
are assigned and used.

Assuming that I would be happy with my location being reported as Telford, how inaccurate is the data? In the
context of path cross the question is “would I be likely to travel to Telford for a beer?”” Time to brush up on spherical
trigonometry basics I guess.

The data is reasonably correct in stating a location of N52.6333°; W2.5000° for Telford. My location, assuming the
WGS-84 datum, is N52.015°; W0.221°.

Calculating the Great-circle distance between the two coordinates is relatively easy. I've hacked together a really
simple Python module called upoints that allows you to calculate the distance between two points on Earth(or any
other approximately spherical body with a few minor changes). It offers the Law of Cosines and haversine methods
for calculating the distance, because they’re the two I happen to know.

1.1.2 Too inaccurate?

>>> from upoints import point

>>> Home = point.Point (52.015, -0.221)

>>> Telford = point.Point (52.6333, -2.5000)
>>> print (" kM"™ % Home.distance (Telford))
169 kM

The script above tells us that the distance from my house to Telford is approximately 170 kM (just over 100 miles
for those so inclined), given that result what is the answer to my question “would I be likely to travel to Telford for a
beer?” Probably not.

The answer isn’t that simple though. Whereas I probably wouldn’t travel 170 kM for a beer with my good friend
Danny(sorry Danny!), I would consider travelling 170 kM to meet up with Roger Beckinsale. It isn’t because Danny
is bad company(quite the contrary), it is because I live eight kilometres from Danny’s house and can pop round for a
beer whenever the urge hits me. Roger on the other hand lives on the Isle of Lewis, as far North West as the British
Isles go, and I haven’t seen him for a year or so.

There is only one conclusion to draw from this: Accuracy is in the eye of the beerholder(sorry!). This conclusion has
led me to implement some new features in our manual path cross tool, all based around the idea of relative proximity.

The “average” location of a person is important when calculating whether your paths cross®. I’'m not really interested
in seeing when somebody who works at the same site as me is within twenty kilometres of me as it would clearly

2 1 guess you could argue it gets the US area code, US metro code and zipcode correct as none of them apply here.

3 The implementation actually considers the mode, and not the average, in calculating “home” locations. It makes it less prone to errors when
people only report long distance changes, because the clustering isn’t so obvious. If more people hosted a complete hCard, we wouldn’t even need
to calculate this.

4 Chapter 1. Contents

http://www.ukfsn.org/
http://microformats.org/wiki/hcard

upoints, Release 0.12.2

happen a lot, but I’d like to see when somebody visits from abroad or heads to a show within perhaps thirty kilometres
of my location.

1.1.3 Your proximity alert

I’ve hacked support for relative proximities in to our Haskell tool, but upoints could be used as the basis to im-
plement something similar in Python. Taking Seemant, who lives in Boston, Ma., as an example as it is his fault I'm
playing with Python and geoip upoints can tell us:

>>> Seemant = point.Point (42, -71)
>>> print (" kM"™ % Home.distance (Seemant))
5257 kM

We now have to make a decision about the range for the proximity alert given that Seemant lives some five thousand
kilometres away. Being that I owe him many beers for taking care of a lot of my Gentoo bugs for me, I should perhaps
set the range to be quite low and save myself some money.

Without taking in to account my stinginess it seems that a reasonable target range is the square root of the home-to-
home distance. From looking at the events I’ve tagged to meet up with someone in the past year it seems that all of
them fall surprisingly evenly within the square root of the distance we live from each other.

Marginally weighted square roots might be more appropriate in reality because there are some anomalies. For example,
I travelled from Kensington to West India Dock after LinuxWorld last year to catch up with friends who live a few
minutes up the Al from my house. The reason being for most of last year our schedules seemed to be stopping us
meeting up locally, but even that fell within 1.5 times the square root. Adding in a key to show the last face to face
meeting, would probably allow one to assign weighting automatically. Continuing the Seemant example would mean
increasing his range significantly, being a BTS and email-only contact.

>>> import math
>>> math.sqgrt (Home.distance (Seemant))
72.51154203831521

If we forget about the anomalies, and just take the square root as being correct I can populate the relationship for
Seemant with a 73 kM limit. I’'m sure each person involved will have their own idea of what a reasonable limit would
be, so that should be user defined.

1.1.4 Conclusions

geoip wasn’t, and isn’t going to become, a viable way to update the path cross database and until more mobile devices
come equipped with GPS automated updates just aren’t going to be usable. If you want to start claiming those owed
beers the answer is to publish your schedule in valid hCalendar, and publish a hCard containing your home location
so you get the correct range allowance.

If you think of any good uses for upoint s, drop me a mail. Cool new uses with attached patches are even better!

1.1.5 Bonus

Having already implemented the basic class and distance method, I figured I may as well add bearing calculation too.
It’s only 4 lines of code, so why not?

>>> print ("A heading of ° will find the beers!" % Home.bearing(Telford))
A heading of 294° will find the beers!

1.1. Geolocation and path cross 5

http://www.gentoo.org/

upoints, Release 0.12.2

1.2 The MERLIN system

1.2.1 Introduction

MERLIN, the Multi-Element Radio Linked Interferometer Network, radio telescope array that is spread throughout
central England and Wales. The interesting aspect of MERLIN for our uses is high-quality, minimally diverse loca-
tion identifiers are available publicly. They make a reasonably useful test case for upoint s objects across small
geographic distances.

According to the official MERLIN documentation the locations of the array elements are:

Name Latitude Longitude
Cambridge 52°1006.48N | 000°0223.25E
Darnhall 53°0838.40N | 002°3245.57W
Defford 52°0527.61N | 002°0809.62W
Knocking 52°4640.83N | 003°0039.55W
Lovell Telescope | 53°1410.50N | 002°1825.74W
Mark I1 53°1351.62N | 002°1834.16W
Pickmere 53°1644.42N | 002°2641.98W

1.2.2 Using Point objects

We can create a Python dictionary containing the locations of the array very simply:

>>> from upoints.point import
>>> from upoints import utils
>>> MERLIN = KeyedPoints ({

(Point, KeyedPoints)

'Cambridge': Point ((52, 10, 6.48), (0, 2, 23.25)),
'Darnhall': Point ((53, 8, 38.4), (-2, -32, —-45.57)),
'Defford': Point ((52, 5, 27.61), (-2, -8, -9.62)),
'Knocking': Point ((52, 46, 40.83), (-3, -0, -39.55)),

'Lovell Telescope': Point ((53, 14, 10.5), (-2, -18, -25.74)),
'Mark II': Point ((53, 13, 51.62), (-2, -18, -34.16)),
'"Pickmere': Point ((53, 16, 44.42), (-2, -26, —-41.98)),

})

As a simple smoke test the MERLIN website contains a location page which states the longest baseline in the array is
Cambridge to Knocking at 217 kM, and also that the shortest baseline is between the Jodrell Bank site and Pickmere
at 11.2 kM. The Point object’s distance () method can calculate these distances for us quite simply:

>>> " kM" % MERLIN['Cambridge'].distance (MERLIN]['Knocking'])

'217.312 kM!

>>> " kM" % MERLIN|['Lovell Telescope'].distance (MERLIN['Pickmere'])

'10.322 kM'

>>> " kM" & MERLIN['Mark II'].distance (MERLINJ['Pickmere'])

'10.469 kM'

Note: The web page gives the shortest baseline as the distance from Pickmere to Jodrell Bank, but doesn’t give a

location for Jodrell Bank. However, as can be seen from the example above the two array elements based at Jodrell
Bank(Lovell Telescope and the Mark II) are giving a plausible value.

6 Chapter 1. Contents

http://www.merlin.ac.uk/
http://www.merlin.ac.uk/user_guide/OnlineMUG-ajh/newch0-node62.html

upoints, Release 0.12.2

1.2.3 Using dump_xearth_markers ()

The MERLIN website also contains a layman description page that has a nice map showing the locations of the array
elements, we can create a similar image with xplanet or xearth:

>>> print ("\n".join (utils.dump_xearth_markers (MERLIN)))
52.168467 0.039792 "Cambridge"

53.144000 -2.545992 "Darnhall"

52.091003 -2.136006 "Defford"

52.778008 -3.010986 "Knocking"

53.236250 -2.307150 "Lovell Telescope"

53.231006 -2.309489 "Mark II"

53.279006 -2.444994 "pPickmere"

The map on the website contains a few more locations presumably to help the viewer with orientation, but the image
below is useful as a good approximation. And, of course, the locations could be supplemented either by hand, or by
using one of the other upoints supported databases.

1.2.4 Examining local solar time

Imagine the contrived example that we were allowed access to each of the locations and we’re hoping to catch the
end of an imaginary partial eclipse occurring at 05:45 UTC on 2007-09-20 we can find the best location to view from
quite simply. Clearly, the most important factor is whether the Sun will be visible at the given time and this can be
calculated very easily:

>>> import datetime
>>> for name, rise in MERLIN.sunrise (datetime.date (2007, 9, 20)):

if rise > datetime.time (5, 45): continue

print (name)
. print (" — sunrise @ 2s UTC" % rise.strftime("$H:%M"))
Cambridge

- sunrise @ 05:41 UTC

1.2. The MERLIN system 7

http://www.merlin.ac.uk/about/layman/merlin.html
http://xplanet.sourceforge.net/
http://hewgill.com/xearth/original/

upoints, Release 0.12.2

This simple code snippet shows us that we should set up our equipment at the Cambridge site, which lucky for me is
only a short trip up the road:

>>> Home = Point (52.015, -0.221)
>>> print (" kM" % Home.distance (MERLIN['Cambridge']))
24 kM

1.2.5 Comparisons with other Point-type objects

In our contrived example above we may wish to travel only if the weather will be warm enough that we’re unlikely to
freeze to death(that risk is only acceptable for a full eclipse), and we can use the other upoints tools to find closest
weather station quite easily:

>>> from upoints import weather_stations
>>> ICAO_stations_database = urllib.urlopen ("http://weather.noaa.gov/data/nsd_cccc.txt

(_}u)

>>> ICAO_stations = weather_stations.Stations (ICAO_stations_database, "ICAO")
>>> calc_distance = lambda (name, location): MERLIN['Cambridge'].distance (location)
>>> station_id, station_data = sorted(ICAO_stations.items (), key=calc_distance) [0]

>>> print (station_data)
Cambridge (N52.200°; E000.183°)

The calc_distance () function simply returns the distance from the Cambridge MERLIN station to the provided
station, and we use it as the sorting method to discover the closest weather station from the NOAA database. The
station_idand station_data variables are set to the first result from the sorted list of station distances, which
thanks to the calc_distance () sorting method are the details of the closest weather station.

As we’re already using Python we may as well use Python to fetch the weather data for the station using the ever
useful pymetar library.

>>> report = pymetar.ReportFetcher (station_id) .FetchReport ()

>>> report_decoded = pymetar.ReportParser () .ParseReport (report)
>>> print ("2%i°C @ " % (report_decoded.getTemperatureCelsius(),
C report_decoded.getISOTime ()))

10°C @ 2007-11-28 19:20:002Z

1.3 Cities and cities.py

A colleague pointed me to the GNU miscfiles cities database after I posted geolocation and path cross, suggesting that
it would be a useful database to support. Being that it includes five hundred places around the globe, and I already
have the database installed, I have to agree.

GNU miscfiles is a package of, well miscellaneous files. It contains, amongst other things a list of world currencies,
languages and the file we’re looking at today cities.dat.

In v1.4.2, the version I have installed, cities.dat contains 497 entries. The file is a simple flat Unicode database,
with records separated by //, a format that would be as well suited to processing with awk as it would with Python.

ID : 315

Type : City
Population

Size :

Name : Cambridge
Country : UK

(continues on next page)

8 Chapter 1. Contents

http://weather.noaa.gov/
http://www.python.org/
http://www.schwarzvogel.de/software-pymetar.shtml
http://directory.fsf.org/project/miscfiles/
geolocation_and_pathcross.html
http://www.gnu.org/software/gawk/gawk.html
http://www.python.org/

upoints, Release 0.12.2

(continued from previous page)

Region : England

Location : Earth

Longitude : 0.1

Latitude : 52.25

Elevation :

Date : 19961207

Entered-By : Rob.Hooft@EMBL-Heidelberg.DE

You don’t need to hand process the data though, I've added cities to the upoints tarball that takes care of
importing the data. When you import the entries with import_locations () it returns a dictionary of City
objects that are children of the Trigpoint objects defined for Trigpointing and point.py

On my Gentoo desktop the cities database is installed as /usr/share/misc/cities.dat, and can be imported
as simply as:

>>> from upoints import cities
>>> Cities = cities.Cities(open("/usr/share/misc/cities.dat"))

And the imported database can be used in a variety of ways:

>>> print (" cities" % len(Cities))
497 cities
>>> print ("Cities larger with more than 8 million people")
Cities larger with more than 8 million people
>>> for city in Cities:
if city.population > 8000000:
. print (" - " % (city.name, city.population))
Bombay - 8243405
Jakarta - 9200000
Moskwa — 8769000
Sao Paolo - 10063110
Tokyo — 8354615
Mexico - 8831079
>>> print ("Mountains")
Mountains
>>> for city in Cities:

if city.ptype == "Mountain":
print (" " % city.name)
Aconcagua
Popocatepetl

You can recreate the database as a smoke test using the following:

>>> f = open("cities.dat", "w")
>>> f.write("\n//\n".join (map(str, Cities)))
>>> f.close ()

unfortunately the files aren’t simply comparable using di £ £ because of some unusual formatting in the original file,
but visually scanning over the dif£f —w output to ignore the whitespace changes shows that we have a correct export.

The City class inherits Trigpoint which in turn inherits Point, and therefore has all the same methods they
do. This allows you to calculate distances and bearings between the class:~upoints.cities.City objects or any other
derivative object of the parent classes. For example, you could use the dump_xearth_markers () function:

>>> from upoints.utils import dump_xearth_markers
>>> gcottish_markers = dict ((x.identifier, x) for x in Cities
if x.region == "Scotland")

(continues on next page)

1.3. Cities and cities.py 9

trigpointing_and_point_py.html
http://www.gentoo.org/

upoints, Release 0.12.2

(continued from previous page)

>>> print ("\n".Jjoin (dump_xearth_markers (scottish_markers, "name")))
57.150000 -2.083000 "Aberdeen" # 1

55.950000 -3.183000 "Edinburgh" # 83

55.867000 -4.267000 "Glasgow" # 92

Take a look at the Sphinx generated documentation that is included in the tarball to see what can be done.

1.4 Pythons on a plane

In what is probably the final spin-off from geolocation and path cross we’ll be using the upoints modules to work
with airport locations. This can be useful if you’d like to calculate how far you’ve travelled in a certain period, or just
as a large database for calculating rough distances between other places using the closest airports as locations because
of their abundance.

NOAA publishes an enormous amount of world weather information, and often it is keyed to airport location’s weather
stations. Unlike many of the commercial weather data companies NOAA publish their data in clean, well defined
formats, and along with the weather data they also publish extensive location data for the weather stations they monitor.
And many thanks to them, because we can use their databases to populate our local geolocation databases.

>>> from upoints import (point, weather_stations)
>>> WMO_stations_database = urllib.urlopen ("http://weather.noaa.gov/data/nsd_bbsss.txt
oy ll)

>>> WMO_stations = weather_stations.Stations (WMO_stations_database)

The above snippet will import the WMO identifier keyed database available from the meteorological station location
information page. They also provide a database keyed with ICAO identifiers, which can also be imported:

>>> ICAO_stations_database = urllib.urlopen ("http://weather.noaa.gov/data/nsd_cccc.txt
o ll)

>>> ICAO_stations = weather_stations.Stations (ICAO_stations_database, "ICAO")

The WMO indexed database contains 11548 entries and the ICAO keyed database contains 6611 entries as of 2007-
05-30. Unfortunately, the WMO database isn’t a superset of the ICAO data so you either have to choose one, work
with duplicates or import both and filter the duplicates.

Another thing to consider because of the size of the database is whether you need to operate on all the entries at once.
Maybe you only want to work with entries in the UK:

>>> UK_locations = dict (x for x in ICAO_stations.items ()
if x[1].country == "United Kingdom")

Let us imagine for a minute that next month you’re flying from London Luton to our office in Toulouse, then dropping
by Birmingham for GUADEC, and returning to Stansted. If we assume that the planes fly directly along Great Circles
and don’t get stuck in holding patterns waiting to land then we can calculate the distance for the whole journey quite
easily.

>>> Europe = dict (x for x in ICAO_stations.items() if x[1].wmo == 6)
>>> del (ICAO_stations)

>>> print (len (Europe))

1130

First we can see that the trip is entirely based in Europe, and according to the station location page all the European
stations are located within WMO region 6. If we only work with the region 6 locations then our operating database

10 Chapter 1. Contents

http://sphinx.pocoo.org/
geolocation_and_pathcross.html
http://weather.noaa.gov/tg/site.shtml
http://weather.noaa.gov/tg/site.shtml
http://weather.noaa.gov/tg/site.shtml

upoints, Release 0.12.2

need only contain 1130 entries, and if we wished we could release the full database containing 10000 entries we don’t
need from memory using code similar to the snippet above'.

>>> Trip point.Points ([Europe[i] for i in ('EGGW', 'LFBO', 'EGBB', 'EGSS'")])
>>> legs = list(Trip.inverse())

>>> print ("¢i legs" % (len(Trip) - 1))
3 legs
>>> for i1 in range(len(Trip) - 1):
print (" * %5 to $s" % (Tripl[i] .name, Trip[i+1l].name))
print (" - %1 kilometres on a bearing of %i degrees" % (legs([i][1l],.

—legs[1] [0]))
* Luton Airport to Toulouse / Blagnac
- 923 kilometres on a bearing of 171 degrees
+ Toulouse / Blagnac to Birmingham / Airport
- 1006 kilometres on a bearing of 347 degrees
* Birmingham / Airport to Stansted Airport
— 148 kilometres on a bearing of 114 degrees
>>> print ("For a total of %i kilometres" % sum(i[l] for i in legs))
For a total of 2078 kilometres

The Station class inherits from Trigpoint and as such you can use the functions and methods defined for it with
Station objects. You could, for example, create a nice graphical view of your trip with xplanet:

>>> Trip = dict(zip(("2007-06-29", "2007-06-30", "2007-07-12",
"2007-07-14"),
. Trip))
>>> f = open("trip.txt", "w")
>>> from upoints import utils
>>> f.write("\n".join (utils.dump_xearth_markers (Trip, "name")))
>>> f.close ()

The code above will create a file named trip.txt that can be used with xplanet or xearth. It actually produces a
reasonably accurate, and quite useful graphical representation of a trip. An example of the output with xplanet can be
seen on the right.

If you’d prefer to see locations marked up with dates, perhaps as an aid to your own path cross suite, simply don’t set
the name parameter in your call to dump_xearth_markers (). Also, as the function only requires a dictionary of

! I’ve personally taken to creating and using cPickle dumps of the database, where each WMO region is stored in a separate file. If you do
this you end up with some interesting results including the 123 locations from the Antarctic, and the 8 obviously classifiable locations missing an
WMO region in the data file. I personally found it quite interesting that the list of entries by region is Europe(30%), Asia(30%), North and Central
America(12%). I'd expected it be more along the lines of one third Asia and one quarter each for Europe and North America with the rest split
reasonably evenly.

1.4. Pythons on a plane 11

http://xplanet.sourceforge.net/
http://hewgill.com/xearth/original/
http://www.w3.org/wiki/PathCross

upoints, Release 0.12.2

Trigpoint-style objects you could apply filter () and map () expressions to the objects to generate your own
labels for the markers.

There is a wealth of Sphinx generated HTML output in the tarball, including documentation and usage examples.
If you still have any questions after reading the documentation, drop me a mail and I’'ll do my best to answer your
questions. Also, I'd love to hear from you if come up with any clever uses for for the modules in upoints.

1.5 Trigpointing and point.py

One interesting email I received after posting geolocation and path cross asked if the module could be used for quick
visualisation when trigpointing. Now that I’ve found out what trigpointing is I believe it can, and I’ve added a couple
of extra features to make it easier for trigpointers to use the upoint.s module.

Firstly, for those who don’t know, trigpointing is the activity of tracking down trigpoints and recording them. I guess
you could make a parallel to trainspotting, but with a navigational slant. Some people apparently use GPS units to track
down the trigpoints, that I’d suggest makes it just hiking with trigpoints as waypoints. And some people, like Robert
Johnson who mailed me, prefer to do the navigation with just an ordnance survey map and a compass which in my
eyes makes it a little more interesting. Also, a few sites I've found with Google seem to suggest that many trigpointers
like to use triangulation, although I suspect some mean trilateration, to travel between trigpoints as a navigational
challenge.

Note: Robert tells me that TrigpointingUK is a popular website among trigpointers in the UK. It contains information
about many of the trigpoints you can find, such as the one closest to me at Bygrave

Anybody who knows me well will attest that that I’'m quite the navigation geek, mostly just as a curiosity being that
what we’re really talking about is just applications of specific branches of math. As such, I actually find the concept
of trigpointing by hand quite intriguing. That being said technology is here to assist us, and with that let me introduce
trigpoints asimple extension over the original edist . py script.

>>> from upoints import trigpoints
>>> database_location = urllib.urlopen ("http://www.haroldstreet.org.uk/waypoints/
—alltrigs-wgs84.txt")

>>> Trigpoints = trigpoints.Trigpoints (database_location)
>>> print (len(Trigpoints))
6557

Thanks to the online database we now have the locations of all the Ordnance Survey trigpoints in an easy to use format
— a Python dictionary.

12 Chapter 1. Contents

https://docs.python.org/3/library/functions.html#filter
https://docs.python.org/3/library/functions.html#map
http://sphinx.pocoo.org/
mailto:jnrowe@gmail.com
geolocation_and_pathcross.html
http://www.google.com/
http://www.trigpointinguk.com/
http://www.trigpointinguk.com/trigs/trig-details.php?t=1830
http://www.haroldstreet.org.uk/trigpoints/
http://www.python.org/

upoints, Release 0.12.2

If I"d like to see trigpoints close to me, say within 20kM, and less than 60m above sea level I could tap the following
in to my IPython session:

>>> Home = trigpoints.point.Point (52.015, -0.221)
>>> for identifier, trigpoint in sorted(Trigpoints.items()):
if Home.__eq (trigpoint, 20) and trigpoint.altitude < 60:
C. print ("%s - 25" % (identifier, trigpoint))
500936 - Broom Farm (52°03'57"N, 000°16'53"W alt 37m)
501822 - Crane Hill (52°11'10"N, 000°14'51"W alt 58m)
503750 - Limlow Hill (52°03'31"N, 000°04'20"W alt 59m)
505681 - Sutton (52°06'24"N, 000°11'57"W alt 55m)

Or we can display all the trigpoints within a given region. For example, to show trigpoints within the region from
51°52°15”N, 000°2829”W to 52°09°07”N, 000°01°52”"W.

>>> latitude_min = trigpoints.utils.to_dd (51, 52, 15)
>>> longitude_min = trigpoints.utils.to_dd (0, -28, -29)
>>> latitude_max = trigpoints.utils.to_dd(52, 9, 7)
>>> longitude_max = trigpoints.utils.to_dd(0, -1, -52)
>>> for identifier, trigpoint in sorted(Trigpoints.items()):
if latitude_min < trigpoint.latitude < latitude_max \
and longitude_min < trigpoint.longitude < longitude_max:
. print ("%s - 25" % (identifier, trigpoint))
500928 - Bromley Common (51°52'17"N, 000°06'14"W alt 118m)
500936 - Broom Farm (52°03'57"N, 000°16'53"W alt 37m)
501097 - Bygrave (52°00'38"N, 000°10'24"W alt 97m)
501417 - Cherrys Green (51°55'13"N, 000°01'52"W alt 126m)
501428 - Chicksands North Radio Mast (52°02'46"N, 000°22'17"W alt 62m)
501928 - Croydon Hill (52°07'37"N, 000°05'26"W alt 78m)
502034 - Deacon Hill (51°57'19"N, 000°21'46"W alt 173m)
502908 - Hammer Hill Farm (52°04'32"N, 000°24'05"W alt 89m)
503138 - Higham Gobion (51°58'48"N, 000°23'55"W alt 75m)
503750 - Limlow Hill (52°03'31"N, 000°04'20"W alt 59m)
503774 - Little Easthall Farm (51°53'23"N, 000°15'23"W alt 140m)
504024 - Marsh Farm Mh (51°55'24"N, 000°27'39"W alt 152m)
505392 - Sish Lane (51°54'39"N, 000°11'11"w alt 136m)
505681 - Sutton (52°06'24"N, 000°11'57"W alt 55m)
505852 - Therfield (52°01'03"N, 000°03'38"W alt 168m)
506163 - Warden Hill (51°55'20"N, 000°24'53"W alt 195m)
506165 — Warden Tunnel (52°05'15"N, 000°22'30"W alt 84m)

Or we could generate a file to use with xearth that contains all the trigpoints above 1000m above sea level:

>>> from upoints.utils import dump_xearth_markers
>>> high_markers = {}
>>> for identifier, trigpoint in Trigpoints.items{() :
if trigpoint.altitude > 1000:
high_markers[identifier] = trigpoint
>>> f = open("high markers.txt", "w"
>>> f.write ("\n".join (dump_xearth_markers (high_markers)))
>>> f.close ()

Now we can use xearth, or xplanet, to visualise the trigpoints that are higher than 1000m. If you start xearth with
the command xearth —-pos "fixed 57 -4" -mag 25 -noroot -markerfile high_markers.
txt you will see an image similar to the one on the right.

You could, of course, use dump_xearth _markers () to dump the entire trigpoint database, but with over 6000
locations the result is just going to be a sea of blurred text when rendered.

1.5. Trigpointing and point.py 13

http://ipython.scipy.org/
http://hewgill.com/xearth/original/
http://xplanet.sourceforge.net/

upoints, Release 0.12.2

And it is possible to fold the generation of the high_markers dictionary in to a single operation using lambda
expressions and £ilter () such as:

>>> high_markers = dict(filter(lambda x: x[1].altitude > 1000,
Trigpoints.items()))

However, you opinion on whether this is cleaner or not depends a lot on your background. If only you could run
filter () on a dictionary directly, this would definitely be the better solution. I’'m going to continue using the
unrolled version on this page because it seems more people are comfortable with them in spite of me favouring the
filter () and lambda () version, but it is just a matter of taste and yours may vary.

Using t rigpoints you could generate marker file for locations with an altitude of between 900m and 910m using
their location names as labels.

>>> display_markers = {}
>>> for identifier, trigpoint in Trigpoints.items():
if 900 < trigpoint.altitude < 910:

display_markers|[identifier] = trigpoint
>>> f = open("display_markers.txt", "w")
>>> f.write ("\n".join (dump_xearth_markers (display_markers,
. "name™)))
>>> f.close()

The result of how that query could be shown with xplanet can be found to the right.

The Trigpoint class inherits from the Point class, and therefore has all the same methods it does. You can
calculate distances and bearings between trigpoints. I suggest reading the HTML files generated by Sphinx that are
included in the tarball to see how it all works, including some more examples.

14 Chapter 1. Contents

https://docs.python.org/3/library/functions.html#filter
https://docs.python.org/3/library/functions.html#filter
https://docs.python.org/3/library/functions.html#filter
http://sphinx.pocoo.org/

upoints, Release 0.12.2

Note: And on a slight tangent, in my mind one of the best reasons for using Python is now evident, Nokia provide
Python builds for some of their “smartphone” handsets. This means it is possible to use t rigpoints on the move
using only the mobile phone in your pocket, and it makes for a fun diversion from Snake 3D. Even as a simple
database it can be surprisingly useful, especially given the difficulty of finding the minuscule trigpoint symbol on
Ordnance Survey’s Explorer series maps.

We’re on a journey now, so if you can think of any cool uses for any of the classes and functions in the upoints
tarball drop me a mail.

1.6 xearth and path cross

As a final comment in the geolocation and path cross entry I wrote:

If you think of any good uses for upoints, drop me a mail. Cool new uses with attached patches are
even better!

The first chunk of feedback I received was from a co-worker, Kelly Turner, who asked how difficult it would be to use
upoints with xearth’s marker files. The answer is not too difficult, not too difficult at all.

As a little background the reason for wanting access to the data in marker files is that our internal contact database
allows us to export a file containing a subset of our contact’s known current locations'. The original reasoning behind
the feature was to allow simple visualisation of a team’s members, for example to quickly locate somebody who is
close to a customer’s site.

I've reworked the original edist .py script in to something a little more generic, and it also now includes a new
module, xearth, that can import locations from an xearth marker file. Unfortunately, I can’t use an example gener-
ated from our system because I don’t have permission to publish the data but I'1l give an example of its usage with a
public file:

>>> from upoints import xearth

>>> earth_markers = urllib.urlopen("http://xplanet.sourceforge.net/Extras/earth-
—markers—-schaumann™")
>>> markers = xXearth.Xearths (earth_markers)

>>> print (repr (markers['Cairo']))
Xearth (30.05, 31.25, 'Egypt')

>>> print (markers|['Warsaw'])
Poland (N52.250°; E021.000°)

There are plenty of comments in the xearth file, but what you get from the Xearths is a dictionary with the
location name as a key, and value consisting of a tuple of a Point object and any associated comments from the
source file.

You can use all the methods, such as distance () and bearing (), that are defined in the Point classon Xearth
objects.

>>> print ("Suva to Tokyo is kM" % markers|['Suva'].distance (markers['Tokyo']))
Suva to Tokyo is 7253 kM
>>> print ("Vienna to Brussels on °" % markers|['Vienna'] .bearing(markers['Brussels

—"'1))
Vienna to Brussels on 293°

With the original purpose of the marker file export feature being finding people local to a customer it would be nice to
use xearth to do the same in a more programmatic way, and of course that is possible too.

I All thanks to Simon Woods according to the source code repository, so a big thanks to him!

1.6. xearth and path cross 15

http://www.nokia.com/
geolocation_and_pathcross.html
http://hewgill.com/xearth/original/

upoints, Release 0.12.2

>>> Customer = xearth.point.Point (52.015, -0.221)
>>> for marker in markers:

distance = Customer.distance (markers[marker])
if distance < 300:
print (" kM - , " % (distance, marker, markers[marker]))

57 kM - London, United Kingdom (N51.500°; W000.170°)

Imagining for a second the customer lives in my house, the only marker within 300 kilometres of me in the city marker
file we’ve imported is London.

I'll end this entry with similar text to that which created it: If you think of any good uses for upoints, drop me a
mail. Cool new uses with attached patches are even better!

1.7 edist

1.7.1 Simple command line coordinate processing

1.7.2 SYNOPSIS

edist [option]... <command> <location. ..>

1.7.3 DESCRIPTION

edist operates on one, or more, locations specified in various formats. For example, a location string of “52.015;-
0.221” would be interpreted as 52.015 degrees North by 0.221 degrees West, as would “52d0m54s N 000d13m15s
W”. Positive values can be specified with a “+” prefix, but it isn’t required.

It is possible to use Maidenhead locators, such as “I092” or “1092va”, for users who are accustomed to working with
them.

Users can maintain a local configuration file that lists locations with assigned names, and then use the names on the
command line. This makes command lines much easier to read, and also makes reusing locations at a later date
simpler. See CONFIGURATION FILE.

1.7.4 OPTIONS

--version Show the version and exit.
-v, —verbose / —quiet Change verbosity level of output.
--config <file> Config file to read custom locations from.
--csv-file <file> CSV file (gpsbabel format) to read route/locations from.
-0, --format <format> Produce output in dms, dm or dd format.
-u <units>, --units <units> Display distances in kilometres, statute miles or nautical miles.
-1, --location <location> Location to operate on.

-h, --help Show this message and exit.

16 Chapter 1. Contents

upoints, Release 0.12.2

1.7.5 COMMANDS

bearing

Calculate the initial bearing between locations bearing
g, —string Display named bearings.
-h, --help Show this message and exit.

destination

Calculate destination from locations.
-1 <accuracy>, --locator <accuracy> Accuracy of Maidenhead locator output.
-h, --help Show this message and exit.

display

Pretty print the locations.
-1 <accuracy>, --locator <accuracy> Accuracy of Maidenhead locator output.
-h, --help Show this message and exit.

distance

Calculate distance between locations.
-h, --help Show this message and exit.

final-bearing

Calculate final bearing between locations.
-g, --string Display named bearings.

-h, --help Show this message and exit.

flight-plan

Calculate flight plan for locations.
-s <speed>, --speed <speed> Speed to calculate elapsed time.
-t <format>, --time <format> Display time in hours, minutes or seconds.

-h, --help Show this message and exit.

range

Check locations are within a given range.

1.7. edist

17

upoints, Release 0.12.2

sunrise
Calculate the sunrise time for locations.

-h, --help Show this message and exit.
sunset

Calculate the sunset time for locations.

-h, --help Show this message and exit.

1.7.6 CONFIGURATION FILE

The configuration file, by default ~/ .edist.conf’, is a simple ° INI format file, with sections headers
defining the name of the location and their data defining the actual position. You can define locations by either their
latitude and longitude, or with a Maidenhead locator string. Any options that aren’t handled will simply ignored. For
example:

[Home]

latitude = 52.015
longitude = -0.221
[Cambridge]

latitude = 52.200
longitude = 0.183

[Pin]
locator = I092

With the above configuration file one could find the distance from Home to Cambridge using edist -1 Home
-1 Cambridge distance.

1.7.7 BUGS

None known.

1.7.8 AUTHOR

Written by James Rowe

1.7.9 RESOURCES

Home page: https://github.com/JNRowe/upoints

1.7.10 COPYING

Copyright © 2007-2017 James Rowe <jnrowe @ gmail.com>

This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public
License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later
version.

18 Chapter 1. Contents

mailto:jnrowe@gmail.com
https://github.com/JNRowe/upoints
mailto:jnrowe@gmail.com

upoints, Release 0.12.2

1.8 APl documentation

upoints - Modules for working with points on Earth

upoints is a collection of GPL v3 licensed modules for working with points on Earth, or other near spherical objects.
It allows you to calculate the distance and bearings between points, mangle xearth/xplanet data files, work with online
UK trigpoint databases, NOAA’s weather station database and other such location databases.

The upoints.point module is the simplest interface available, and is mainly useful as a naive object for simple
calculation and subclassing for specific usage. An example of how to use it follows:

>>> from upoints import point

>>> Home = point.Point (52.015, -0.221)

>>> Telford = point.Point (52.6333, -2.5000)
>>> int (Home.distance (Telford))

169

>>> int (Home.bearing (Telford))

294

>>> int (Home.final_bearing (Telford))

293

>>> import datetime

>>> Home.sun_events (datetime.date (2007, 6, 28))
(datetime.time (3, 42), datetime.time (20, 24))
>>> Home.sunrise (datetime.date (2007, 6, 28))
datetime.time (3, 42)

>>> Home.sunset (datetime.date (2007, 6, 28))
datetime.time (20, 24)

1.8.1 Contents

baken

baken - Imports baken data files.

class upoints.baken.Baken (latitude, longitude, antenna=None, direction=None, frequency=None,
height=None, locator=None, mode=None, operator=None,

power=None, gth=None)
Bases: upoints.point.Point

Class for representing location from baken data files.

New in version 0.4.0.

Initialise a new Baken object.

Parameters

e latitude (float) - Location’s latitude
* longitude (float)— Location’s longitude
* antenna (str)— Location’s antenna type
e direction (tuple of int)- Antenna’s direction
* frequency (float)— Transmitter’s frequency
* height (fI1oat)— Antenna’s height

* locator (str)— Location’s Maidenhead locator string

1.8. APl documentation 19

http://www.gnu.org/licenses/
http://hewgill.com/xearth/original/
http://xplanet.sourceforge.net/
http://weather.noaa.gov/
http://www.qsl.net:80/g4klx/
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str

upoints, Release 0.12.2

¢ mode (st r)— Transmitter’s mode

* operator (tuple of str)- Transmitter’s operator
* power (float)— Transmitter’s power

* gth (str)—Location’s qth

Raises L.ookupError — No position data to use

class upoints.baken.Bakens (baken_file=None)
Bases: upoints.point.KeyedPoints

Class for representing a group of Baken objects.

New in version 0.5.1.

Initialise a new Bakens object.

import_locations (baken_file)

cellid

Import baken data files.

import_locations () returns a dictionary with keys containing the section title, and values consisting
of a collection Baken objects.

It expects data files in the format used by the baken amateur radio package, which is Windows INI style
files such as:

[Abeche, Chad]
latitude=14.460000
longitude=20.680000
height=0.000000

[GB3BUX]
frequency=50.000
locator=I093BF
power=25 TX

antenna=2 x Turnstile
height=460

mode=A1lA

The reader uses the configparser module, so should be reasonably robust against encodings and such.
The above file processed by import_locations () will return the following dict object:

{"Abeche, Chad": Baken(14.460, 20.680, None, None, None, 0.000,
None, None, None, None, None),
"GB3BUX": : Baken (None, None, "2 x Turnstile", None, 50.000,
460.000, "IO93BF", "A1lA", None, 25, None)}

Args:: baken_file (iter): Baken data to read

Returns Named locations and their associated values

Return type dict

cellid - Imports OpenCellID data files.

20

Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#LookupError
http://www.qsl.net:80/g4klx/
https://docs.python.org/3/library/configparser.html#module-configparser
https://docs.python.org/3/library/stdtypes.html#dict

upoints, Release 0.12.2

class upoints.cellid.Cell (ident, latitude, longitude, mcc, mnc, lac, cellid, crange, samples, created,

updated)
Bases: upoints.point.Point

Class for representing a cellular cite from OpenCellID.org.

New in version 0.11.0.

Initialise a new Ce 11 object.

Parameters

* ident (int) - OpenCellID database identifier
e latitude (float)— Cell’s latitude
* longitude (float)— Cell’s longitude
* mce (int) — Cell’s country code
e mnc (int)— Cell’s network code
* lac (int) - Cell’s local area code
* cellid (int)— Cell’s identifier
* crange (int)— Cell’s range
* samples (int)— Number of samples for the cell
e created (datetime.datet ime)— Date the cell was first entered
* updated (datetime.datet ime) — Date of the last update

class upoints.cellid.Cells (cells_file=None)
Bases: upoints.point.KeyedPoints

Class for representing a group of Ce 11 objects.
New in version 0.11.0.
Initialise a new Ce11ls object.

import_locations (cells_file)
Parse OpenCellID.org data files.

import_locations () returns a dictionary with keys containing the OpenCellID.org database identi-
fier, and values consisting of a Ce11 objects.

It expects cell files in the following format:

22747,52.0438995361328,-0.2246370017529,234,33,2319,647,0,1,
2008-04-05 21:32:40,2008-04-05 21:32:40
22995,52.3305015563965,-0.2255620062351,234,10,20566,4068,0,1,
2008-04-05 21:32:59,2008-04-05 21:32:59
23008,52.3506011962891,-0.2234109938145,234,10,10566,4068,0,1,
2008-04-05 21:32:59,2008-04-05 21:32:59

The above file processed by import_locations () will return the following dict object:

{23008: Cell (23008, 52.3506011963, -0.223410993814, 234, 10, 10566,
4068, 0, 1, datetime.datetime (2008, 4, 5, 21, 32, 59),
datetime.datetime (2008, 4, 5, 21, 32, 59)),

22747: Cell (22747, 52.0438995361, -0.224637001753, 234, 33, 2319,
647, 0, 1, datetime.datetime (2008, 4, 5, 21, 32, 40),
datetime.datetime (2008, 4, 5, 21, 32, 40)),

(continues on next page)

1.8. APl documentation 21

http://opencellid.org/
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime
http://opencellid.org/

upoints, Release 0.12.2

(continued from previous page)

22995: Cell (22995, 52.3305015564, -0.225562006235, 234, 10, 20566,
4068, 0, 1, datetime.datetime (2008, 4, 5, 21, 32, 59),
datetime.datetime (2008, 4, 5, 21, 32, 59))}

Parameters cells_file (iter)— Cell data to read
Returns Cell data with their associated database identifier

Return type dict

cities

cities - Imports GNU miscfiles cities data files.

class upoints.cities.Cities (data=None)
Bases: upoints.point.Points

Class for representing a group of City objects.
New in version 0.5.1.
Initialise a new Cities object.

import_locations (data)
Parse GNU miscfiles cities data files.

import_locations () returns a list containing City objects.

It expects data files in the same format that GNU miscfiles provides, that is:

ID 1

Type City

Population 210700
Size

Name Aberdeen
Country UK
Region Scotland
Location Earth
Longitude -2.083
Latitude 57.150
Elevation

Date 19961206

Entered-By
//

Rob.Hooft@EMBL-Heidelberg.DE

ID 2

Type City
Population 1950000
Size

Name Abidjan
Country Ivory Coast
Region

Location Earth
Longitude -3.867
Latitude 5.333
Elevation

Date 19961206

Entered-By

Rob.Hooft@EMBL-Heidelberg.DE

When processed by import_locations () will return 1ist object in the following style:

22

Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#dict
http://directory.fsf.org/project/miscfiles/
http://directory.fsf.org/project/miscfiles/

upoints, Release 0.12.2

[City (1, "City", 210700, None, "Aberdeen", "UK", "Scotland",

"Earth", -2.083, 57.15, None, (1996, 12, 6, O, 0O, 0, 4,
341, -1), "Rob.Hooft@EMBL-Heidelberg.DE"),

City(2, "City", 1950000, None, "Abidjan", "Ivory Coast", "",

"BEarth", -3.867, 5.333, None, (1996, 12, 6, 0, 0, 0, 4,
341, -1), "Rob.Hooft@EMBL-Heidelberg.DE")])

Parameters data (iter) — NOAA (National Oceanographic and Atmospheric Administra-

tion) station data to read

Returns Places as City objects

Return type list

Raises TypeError — Invalid value for data

class upoints.cities.City (identifier, name, ptype, region, country, location, population, size, lati-

tude, longitude, altitude, date, entered)

Bases: upoints.trigpoints.Trigpoint

Class for representing an entry from the GNU miscfiles cities data file.

New in version 0.2.0.

Initialise a new City object.

Parameters

identifier (int)— Numeric identifier for object
name (st r)— Place name

ptype (str) - Type of place

region (st r)— Region place can be found
country (st r)— Country name place can be found
location (str)— Body place can be found
population (int)— Place’s population

size (int) - Place’s area

latitude (float)— Station’s latitude
longitude (float) — Station’s longitude
altitude (int)— Station’s elevation

date (time. struct_time)— Date the entry was added

entered (str)— Entry’s author

upoints.cities.TEMPLATE = 'ID : %s\nType : %s\nPopulation : %s\nSize
GNU miscfiles cities.dat template

edist

class upoints

.edist .LocationsError (function=None, data=None)

Bases: exceptions.ValueError

Error object for data parsing error.

%$s\nName

1.8. APl documentation

23

%$s\n

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/exceptions.html#TypeError
http://directory.fsf.org/project/miscfiles/
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/time.html#time.struct_time
https://docs.python.org/3/library/stdtypes.html#str

upoints, Release 0.12.2

New in version 0.6.0.

function
Function where error is raised.

data
Location number and data

Initialise a new LocationsError object.
Parameters
e function (str)— Function where error is raised
e data (tuple)— Location number and data

class upoints.edist.NumberedPoint (latitude, longitude, name, units="km’)
Bases: upoints.point.Point

Class for representing locations from command line.
See also:

upoints.point.Point

New in version 0.6.0.

name
A name for location, or its position on the command line

units
Unit type to be used for distances

Initialise a new NumberedPoint object.
Parameters
e latitude (float)— Location’s latitude
* longitude (f1oat)— Location’s longitude
* name (st r)— Location’s name or command line position
* units (str)— Unit type to be used for distances

class upoints.edist.NumberedPoints (locations=None, format="dd’, verbose=True,
fig_locations=None, units="km’)
Bases: upoints.point.Points

Class for representing a group of NumberedPoint objects.

New in version 0.6.0.

Initialise a new NumberedPoints object.

Parameters

* locations (1ist of str)- Location identifiers
* format (st r)— Coordinate formatting system to use
* verbose (bool)— Whether to generate verbose output
* config_locations (dict)— Locations imported from user’s config file
* units (str)— Unit type to be used for distances

bearing (mode, string)
Calculate bearing/final bearing between locations.

con-

24 Chapter 1

. Contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str

upoints, Release 0.12.2

Parameters
* mode (str)— Type of bearing to calculate
* string (bool)— Use named directions

destination (distance, bearing, locator)
Calculate destination locations for given distance and bearings.

Parameters
e distance (f1oat)— Distance to travel
* bearing (f1oat) — Direction of travel
e locator (str)— Accuracy of Maidenhead locator output

display (locator)
Pretty print locations.

Parameters locator (str)— Accuracy of Maidenhead locator output

distance ()
Calculate distances between locations.

flight_plan (speed, time)
Output the flight plan corresponding to the given locations.

Todo: Description

Parameters
* speed (float)— Speed to use for elapsed time calculation
* time (str) - Time unit to use for output

import_locations (locations, config_locations)
Import locations from arguments.

Parameters
* locations (I1ist of str)- Location identifiers
* config_locations (dict)— Locations imported from user’s config
e file-

range (distance)
Test whether locations are within a given range of the first.

Parameters distance (r1oat)— Distance to test location is within

sun_events (mode)
Calculate sunrise/sunset times for locations.

Parameters mode (st r)— Sun event to display

upoints.edist.read_locations (filename)
Pull locations from a user’s config file.

Parameters filename (st r)— Config file to parse
Returns List of locations from config file

Return type dict

1.8. APl documentation

25

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

upoints, Release 0.12.2

upoints.edist

.read_csv (filename)

Pull locations from a user’s CSV file.

Read gpsbabel’s CSV output format

Parameters filename (str)— CSV file to parse

Returns List of locations as st r objects

Return type tuple of dict and list

upoints.edist

.main ()

Main script handler.

Returns O for success, >1 error code

Return type int

geonames

geonames - Imports geonames.org data files.

class upoints

.geonames . Location (geonameid, name, asciiname, alt_names, latitude, longitude,

feature_class, feature_code, country, alt_country, adminl, ad-
min2, admin3, admind, population, altitude, gtopo30, tzname,
modified_date, timezone=None)

Bases: upoints.trigpoints.Trigpoint

Class for representing a location from a geonames.org data file.

All country codes are specified with their two letter ISO-3166 country code.

New in version 0.3.0.

Variables __ TIMEZONES — dateutil.gettz cache to speed up generation

Initialise a new Locat ion object.

Parameters

geonameid (int)—ID of record in geonames database

name (unicode) — Name of geographical location

asciiname (str)— Name of geographical location in ASCII encoding
alt_names (1ist of unicode)— Alternate names for the location
latitude (float) - Location’s latitude

longitude (float) — Location’s longitude

feature_class (str) - Location’s type

feature_code (st r) - Location’s code

country (str)— Location’s country

alt_country (str)— Alternate country codes for location

adminl (st r)— FIPS code (subject to change to ISO code), ISO code for the US and CH
admin2 (st r)— Code for the second administrative division, a county in the US
admin3 (st r) — Code for third level administrative division

admind4 (str) - Code for fourth level administrative division

26

Chapter 1. Contents

http://www.gpsbabel.org/
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
http://www.geonames.org/
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

upoints, Release 0.12.2

* population (int)— Location’s population, if applicable

e altitude (int)— Location’s elevation

* gtopo30 (int)— Average elevation of 900 square metre region, if available
* tzname (st r)— The timezone identifier using POSIX timezone names

* modified_date (datetime.date) — Location’s last modification date in the geon-
ames databases

* timezone (int) - The non-DST timezone offset from UTC in minutes

class upoints.geonames.Locations (data=None, tzfile=None)
Bases: upoints.point.Points

Class for representing a group of Locat ion objects.
New in version 0.5.1.
Initialise a new Locat ions object.

import_locations (data)
Parse geonames.org country database exports.

import_locations () returns alist of trigpoints.Trigpoint objects generated from the data
exported by geonames.org.

It expects data files in the following tab separated format:

2633441 Afon Wyre Afon Wyre River Wayrai,River Wyrai,Wyre
—52.3166667 -4.1666667 H STM GB GB 00 o
— 0 -9999 Europe/London 1994-01-13
2633442 Wyre Wyre Viera 59.1166667 -2.9666667 T o
—~ISL GB GB v 0 1
. Europe/London 2004-09-24

2633443 Wraysbury Wraysbury Wyrardisbury 51.45 -0.55 P,
o PPL GB P9 0 ~
— 28 Europe/London 2006-08-21

Files containing the data in this format can be downloaded from the geonames.org site in their database
export page.

Files downloaded from the geonames site when processed by import_locations () willreturn 1ist
objects of the following style:

[Location (2633441, "Afon Wyre", "Afon Wyre",
['River Wayrai', 'River Wyrai', 'Wyre'l],
52.3166667, -4.1666667, "H", "STM", "GB", ['GB'], "O0O",
None, None, None, 0, None, -9999, "Europe/London",
datetime.date (1994, 1, 13)),

Location (2633442, "Wyre", "Wyre", ['Viera'], 59.1166667,
-2.9666667, "T", "ISL", "GRBR", ['GB'], "V9", None, None,
None, 0, None, 1, "Europe/London",
datetime.date (2004, 9, 24)),

Location (2633443, "Wraysbury", "Wraysbury", ['Wyrardisbury'],
51.45, -0.55, "p", "pPL", "GB", None, "P9", None, None,
None, 0, None, 28, "Europe/London",
datetime.date (2006, 8, 21))]

Parameters data (iter)— geonames.org locations data to read

Returns geonames.org identifiers with Locat i on objects

1.8. APl documentation 27

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/datetime.html#datetime.date
https://docs.python.org/3/library/functions.html#int
http://www.geonames.org/
http://www.geonames.org/
http://download.geonames.org/export/dump/
http://download.geonames.org/export/dump/

upoints, Release 0.12.2

Return type list

Raises FileFormatError — Unknown file format

import_timezones_file (data)

Parse geonames.org timezone exports.

import_timezones_file () returns a dictionary with keys containing the timezone identifier, and
values consisting of a UTC offset and UTC offset during daylight savings time in minutes.

It expects data files in the following format:

Europe/Andorra 1.0 2.0
Asia/Dubai 4.0 4.0
Asia/Kabul 4.5 4.5

Files containing the data in this format can be downloaded from the geonames site in their database export
page

Files downloaded from the geonames site when processed by import_timezones_file () will re-
turn dict object of the following style:

{"Europe/Andorra": (60, 120),
"Asia/Dubai": (240, 240),
"Asia/Kabul": (270, 270)}

Parameters data (iter)— geonames.org timezones data to read
Returns geonames.org timezone identifiers with their UTC offsets
Return type list

Raises FileFormatError — Unknown file format

upoints.geonames.tz = None

gpx

dateutil module reference if available

gpx - Imports GPS eXchange format data files.

class upoints.gpx.Routepoint (latitude, longitude, name=None, description=None, eleva-

tion=None, time=None)

Bases: upoints.gpx._GpxElem

Class for representing a rtepoint element from GPX data files.
New in version 0.10.0.

See also:

_GpxElem

Initialise a new _GpxElem object.

Parameters
e latitude (float)— Element’s latitude
* longitude (float)— Element’s longitude

* name (st r)— Name for Element

28

Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#list
http://www.geonames.org/
http://download.geonames.org/export/dump/
http://download.geonames.org/export/dump/
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str

upoints, Release 0.12.2

* description (str)—Element’s description
e elevation (float)— Element’s elevation
* time (utils.Timestamp)— Time the data was generated

class upoints.gpx.Routepoints (gpx_file=None, metadata=None)
Bases: upoints.gpx._SegWrap

Class for representing a group of Routepoint objects.
New in version 0.10.0.
Initialise a new _SegWrap object.

export_gpx_file()
Generate GPX element tree from Routepoints.

Returns
GPX element tree depicting Routepoints objects
Return type etree.ElementTree

import_locations (gpx_file)
Import GPX data files.

import_locations () returns a series of lists representing track segments with Routepoint objects
as contents.

It expects data files in GPX format, as specified in GPX 1.1 Schema Documentation, which is XML such
as:

<?xml version="1.0" encoding="utf-8" standalone="no"?>
<gpx version="1.1" creator="upoints/0.12.2"
xmlns="http://www.topografix.com/GPX/1/1"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.topografix.com/GPX/1/1 http://www.topografix.
—com/GPX/1/1/gpx.xsd">
<rte>
<rtept lat="52.015" lon="-0.221">
<name>Home</name>
<desc>My place</desc>

</rtept>
<rtept lat="52.167" lon="0.390">
<name>MSR</name>
<desc>Microsoft Research, Cambridge</desc>
</rtept>
</rte>
</gpx>

The reader uses the Element Tree module, so should be very fast when importing data. The above file
processed by import_locations () will return the following 11ist object:

[[Routepoint (52.015, -0.221, "Home", "My place"),
Routepoint (52.167, 0.390, "MSR", "Microsoft Research, Cambridge")],]

Parameters gpx_file (iter)— GPX data to read
Returns Locations with optional comments

Return type list

1.8. APl documentation 29

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
http://www.topografix.com/GPX/1/1/
https://docs.python.org/3/library/stdtypes.html#list

upoints, Release

0.12.2

class upoints.

gpx .Trackpoint (latitude, longitude, name=None,

tion=None, time=None)

Bases: upoints.gpx._GpxElem

Class for representing a trackpoint element from GPX data files.

New in version 0.10.0.

See also:

_GpxElem

Initialise a new _GpxElem object.

Parameters

class upoints.

latitude (float) - Element’s latitude
longitude (float)— Element’s longitude
name (st r)— Name for Element
description (str)— Element’s description

elevation (float)— Element’s elevation

time (utils.Timestamp)— Time the data was generated

gpx . Trackpoints (gpx_file=None, metadata=None)

Bases: upoints.gpx._SegWrap

Class for representing a group of Trackpoint objects.

New in version 0.10.0.

Initialise a new _SegWrap object.

export_gpx_file()
Generate GPX element tree from Trackpoints.

Returns

GPX element tree depicting Trackpoints objects

Return type etree.ElementTree

import_locations (gpx_file)
Import GPX data files.

description=None, eleva-

import_locations () returns a series of lists representing track segments with Trackpoint objects
as contents.

It expects data files in GPX format, as specified in GPX 1.1 Schema Documentation, which is XML such

as:

<name>Home</name>
<desc>My place</desc>

<?xml version="1.0" encoding="utf-8" standalone="no"?>
<gpx version="1.1" creator="upoints/0.12.2"
xmlns="http://www.topografix.com/GPX/1/1"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.topografix.com/GPX/1/1 http://www.topografix.
—com/GPX/1/1/gpx.xsd">
<trk>
<trkseg>
<trkpt lat="52.015" lon="-0.221">

(continues on next page)

30

Chapter 1. Contents

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
http://www.topografix.com/GPX/1/1/

upoints, Release 0.12.2

(continued from previous page)

</trkpt>

<trkpt lat="52.167" lon="0.390">
<name>MSR</name>
<desc>Microsoft Research, Cambridge</desc>

</trkpt>

</trkseg>
</trk>
</gpx>

The reader uses the Element Tree module, so should be very fast when importing data. The above file
processed by import_locations () will return the following 11 st object:

[[Trackpoint (52.015, -0.221, "Home", "My place"),
Trackpoint (52.167, 0.390, "MSR", "Microsoft Research, Cambridge")],]

Parameters gpx_file (iter)— GPX data to read
Returns Locations with optional comments
Return type list

class upoints.gpx.Waypoint (latitude, longitude, name=None, description=None, elevation=None,

time=None)
Bases: upoints.gpx._GpxElem

Class for representing a waypoint element from GPX data files.
New in version 0.8.0.
See also:
_GpxElem
Initialise a new _GpxElem object.
Parameters
e latitude (float)— Element’s latitude
* longitude (float)— Element’s longitude
* name (st r)— Name for Element
* description (str)— Element’s description
e elevation (float)— Element’s elevation
* time (utils.Timestamp)— Time the data was generated

class upoints.gpx.Waypoints (gpx_file=None, metadata=None)
Bases: upoints.point.TimedPoints

Class for representing a group of Waypoint objects.
New in version 0.8.0.
Initialise a new Waypoints object.

export_gpx_file()
Generate GPX element tree from Waypoints object.

Returns GPX element tree depicting Waypoints object

Return type etree.ElementTree

1.8. APl documentation 31

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float

upoints, Release 0.12.2

kml

import_locations (gpx_file)
Import GPX data files.

import_locations () returns a list with Waypoint objects.

It expects data files in GPX format, as specified in GPX 1.1 Schema Documentation, which is XML such

as:

<?xml version="1.0" encoding="utf-8" standalone="no"?>
<gpx version="1.1" creator="PocketGPSWorld.com"
xmlns="http://www.topografix.com/GPX/1/1"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema—-instance"

—com/GPX/1/1/gpx.xsd">
<wpt lat="52.015" lon="-0.221">

<name>Home</name>
<desc>My place</desc>

</wpt>
<wpt lat="52.167" lon="0.390">
<name>MSR</name>
<desc>Microsoft Research, Cambridge</desc>
</wpt>
</gpx>

xsi:schemalocation="http://www.topografix.com/GPX/1/1 http://www.topografix.

The reader uses the Element Tree module, so should be very fast when importing data. The above file

processed by import_locations () will return the following 1ist object:

[Waypoint (52.015, -0.221, "Home", "My place"),

Waypoint (52.167, 0.390, "MSR", "Microsoft Research, Cambridge")]

Parameters gpx_file (iter)— GPX data to read
Returns Locations with optional comments

Return type list

kml - Imports KML data files.

class upoints.kml.Placemark (latitude, longitude, altitude=None, name=None, description=None)

Bases: upoints.trigpoints.Trigpoint
Class for representing a Placemark element from KML data files.
New in version 0.6.0.
Initialise a new P1acemark object.
Parameters
e latitude (float)— Placemarks’s latitude
* longitude (float)— Placemark’s longitude
* altitude (float)— Placemark’s altitude
* name (st r)— Name for placemark

* description (str)— Placemark’s description

32

Chapter 1

. Contents

http://www.topografix.com/GPX/1/1/
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

upoints, Release 0.12.2

tokml ()
Generate a KML Placemark element subtree.

Returns KML Placemark element
Return type etree.Element

class upoints.kml.Placemarks (kmi_file=None)
Bases: upoints.point.KeyedPoints

Class for representing a group of P1acemark objects.
New in version 0.6.0.
Initialise a new Placemarks object.

export_kml_ file ()
Generate KML element tree from Placemarks.

Returns KML element tree depicting Placemarks
Return type etree.ElementTree

import_locations (kml_file)
Import KML data files.

import_locations () returns a dictionary with keys containing the section title, and values consisting
of Placemark objects.

It expects data files in KML format, as specified in KML Reference, which is XML such as:

<?xml version="1.0" encoding="utf-8"?7>
<kml xmlns="http://earth.google.com/kml/2.1">
<Document>
<Placemark id="Home">
<name>Home</name>
<Point>
<coordinates>-0.221,52.015, 60</coordinates>
</Point>
</Placemark>
<Placemark id="Cambridge">
<name>Cambridge</name>
<Point>
<coordinates>0.390,52.167</coordinates>
</Point>
</Placemark>
</Document>
</kml>

The reader uses the Element Tree module, so should be very fast when importing data. The above file
processed by import_locations () will return the following dict object:

{"Home": Placemark (52.015, -0.221, 60),
"Cambridge": Placemark (52.167, 0.390, None) }

Parameters kml_file (iter) - KML data to read
Returns Named locations with optional comments

Return type dict

1.8. APl documentation 33

http://code.google.com/apis/kml/documentation/kmlreference.html
https://docs.python.org/3/library/stdtypes.html#dict

upoints, Release 0.12.2

nmea

nmea - Imports GPS NMEA-formatted data files.

class upoints.nmea.Fix (time, latitude, longitude, quality, satellites, dilution, altitude, geoid_delta,

dgps_delta=None, dgps_station=None, mode=None)
Bases: upoints.point.Point

Class for representing a GPS NMEA-formatted system fix.

New in version 0.8.0.

Initialise a new F1ix object.

Parameters

* time (datetime. time)— Time the fix was taken
e latitude (float)— Fix’s latitude
* longitude (float) - Fix’s longitude
* quality (int)—Mode under which the fix was taken
e satellites (int)— Number of tracked satellites
e dilution (float)— Horizontal dilution at reported position
e altitude (float) - Altitude above MSL
* geoid_delta (float)— Height of geoid’s MSL above WGS84 ellipsoid
* dgps_delta (f1oat)— Number of seconds since last DGPS sync
* dgps_station (int) — Identifier of the last synced DGPS station
* mode (st r) - Type of reading

static parse_elements (elements)
Parse essential fix’s data elements.

Parameters elements (11st)— Data values for fix
Returns Fix object representing data
Return type Fix

quality_ string()
Return a string version of the quality information.

Returns:: str: Quality information as string

class upoints.nmea.Locations (gpsdata_file=None)
Bases: upoints.point.Points

Class for representing a group of GPS location objects.
New in version 0.8.0.
Initialise a new Locat ions object.

import_locations (gpsdata_file, checksum=True)
Import GPS NMEA-formatted data files.

import_locations () returns a list of Fix objects representing the fix sentences found in the GPS
data.

It expects data files in NMEA 0183 format, as specified in the official documentation, which is ASCII text
such as:

34 Chapter 1. Contents

https://docs.python.org/3/library/datetime.html#datetime.time
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
http://en.wikipedia.org/wiki/NMEA_0183

upoints, Release 0.12.2

$GPGSV, 6,6,21,32,65,170,35x48

SGPGGA, 142058,5308.6414,N,00300.9257,w,1,04,5.6,1374.6,M,34.5,M,, *6B
SGPRMC, 142058,A,5308.6414,N,00300.9257,wW,109394.7,202.9,191107,5,E,A*2C
$GPGSV,6,1,21,02,76,044,43,03,84,156,49,06,89,116,51,08,60,184,30%7C
$GPGSvV, 6,2,21,09,87,321,50,10,77,243,44,11,85,016,49,12,89,100,52x7A
$GPGSv, 6,3,21,13,70,319,39,14,90,094,52,16,85,130,49,17,88,136,51*7E
$GPGSV,6,4,21,18,57,052,27,24,65,007,34,25,62,142,32,26,88,031,51%73
$GPGSV, 6,5,21,27,64,343,33,28,45,231,16,30,84,198,49,31,90,015,52%7C
SGPGSV, 6,6,21,32,65,170,34%49

$GPWPL, 5200.9000,N,00013.2600, W, HOME*5E

SGPGGA, 142100, 5200.9000,N,00316.6600,wW,1,04,5.6,1000.0,M,34.5,M,, %68
$GPRMC, 142100,A,5200.9000,N,00316.6600,W,123142.7,188.1,191107,5,E,A*21

The reader only imports the GGA, or GPS fix, sentences currently but future versions will probably support
tracks and waypoints. Other than that the data is out of scope for upoints.

The above file when processed by import_locations () will return the following 1ist object:

[Fix (datetime.time (14, 20, 58), 53.1440233333, -3.01542833333, 1,
4, 5.6, 1374.6, 34.5, None, None),
Position (datetime.time (14, 20, 58), True, 53.1440233333,
-3.01542833333, 109394.7, 202.9,
datetime.date (2007, 11, 19), 5.0, 'A'"),
Waypoint (52.015, -0.221, 'Home'),
Fix (datetime.time (14, 21), 52.015, -3.27766666667, 1, 4, 5.6,
1000.0, 34.5, None, None),
Position (datetime.time (14, 21), True, 52.015, -3.27766666667,
123142.7, 188.1, datetime.date (2007, 11, 19), 5.0, 'A")]

Note: The standard is quite specific in that sentences must be less than 82 bytes, while it would be nice
to add yet another validity check it isn’t all that uncommon for devices to break this requirement in their
“extensions” to the standard.

Todo: Add optional check for message length, on by default

Parameters
* gpsdata_file (iter)— NMEA data to read
¢ checksum (bool)— Whether checksums should be tested
Returns Series of locations taken from the data
Return type list
class upoints.nmea.LoranPosition (latitude, longitude, time, status, mode=None)
Bases: upoints.point.Point
Class for representing a GPS NMEA-formatted Loran-C position.
Initialise a new LoranPosition object.
Parameters
e latitude (float) - Fix’s latitude

* longitude (float) - Fix’s longitude

1.8. APl documentation 35

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

upoints, Release 0.12.2

e time (datetime. t ime)— Time the fix was taken
e status (bool)— Whether the data is active
* mode (str)— Type of reading

mode_string ()
Return a string version of the reading mode information.

Returns Quality information as string
Return type str

static parse_elements (elements)
Parse position data elements.

Parameters elements (11ist)— Data values for fix
Returns Fix object representing data

Return type Fix

upoints.nmea.MODE_INDICATOR = {'A': 'Autonomous', 'D': 'Differential', 'E':

NMEA'’s mapping of code to reading type

class upoints.nmea.Position (time, status, latitude, longitude, speed, track, date, variation,

mode=None)
Bases: upoints.point.Point

Class for representing a GPS NMEA-formatted position.

New in version 0.8.0.

Initialise a new Position object.

Parameters

* time (datetime. t ime)— Time the fix was taken
e status (bool)— Whether the data is active
e latitude (float) - Fix’s latitude
* longitude (float) - Fix’s longitude
* speed (float)— Ground speed
* track (float) - Track angle
* date (datetime.date)— Date when position was taken
* variation (float)— Magnetic variation
* mode (st r)— Type of reading

mode_string ()
Return a string version of the reading mode information.

Returns Quality information as string
Return type str

static parse_elements (elements)
Parse position data elements.

Parameters elements (11ist)— Data values for position
Returns Position object representing data

Return type Position

'Estimated’,

36 Chapter 1. Contents

https://docs.python.org/3/library/datetime.html#datetime.time
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/datetime.html#datetime.time
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/datetime.html#datetime.date
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list

upoints, Release 0.12.2

class upoints.nmea.Waypoint (latitude, longitude, name)
Bases: upoints.point.Point

Class for representing a NMEA-formatted waypoint.
New in version 0.8.0.
Initialise a new Waypoint object.
Parameters
* latitude (float)— Waypoint’s latitude
* longitude (f1oat)— Waypoint’s longitude
* name (str)— Comment for waypoint

static parse_elements (elements)
Parse waypoint data elements.

Parameters elements (I 1st)— Data values for fix
Returns Object representing data
Return type nmea.Waypoint

upoints.nmea.calc_checksum (sentence)
Calculate a NMEA 0183 checksum for the given sentence.

NMEA checksums are a simple XOR of all the characters in the sentence between the leading “$” symbol, and

the “*” checksum separator.

Parameters sentence (st r)— NMEA 0183 formatted sentence

upoints.nmea.nmea_latitude (latitude)
Generate a NMEA-formatted latitude pair.

Parameters latitude (fl1oat)— Latitude to convert
Returns NMEA-formatted latitude values
Return type tuple

upoints.nmea.nmea_longitude (longitude)
Generate a NMEA-formatted longitude pair.

Parameters longitude (f1loat)— Longitude to convert
Returns NMEA-formatted longitude values
Return type tuple

upoints.nmea.parse_latitude (latitude, hemisphere)
Parse a NMEA-formatted latitude pair.

Parameters
* latitude (str) - Latitude in DDMM.MMMM
* hemisphere (st r)— North or South

Returns Decimal representation of latitude

Return type float

upoints.nmea.parse_longitude (longitude, hemisphere)
Parse a NMEA-formatted longitude pair.

Parameters

1.8. APl documentation

37

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float

upoints, Release 0.12.2

* longitude (str)— Longitude in DDDMM.MMMM
* hemisphere (st r)— East or West
Returns Decimal representation of longitude

Return type float

osm

osm - Imports OpenStreetMap data files..

class upoints.osm.Node (ident, latitude, longitude, visible=False, user=None, timestamp=None,
tags=None)
Bases: upoints.point.Point

Class for representing a node element from OSM data files.
New in version 0.9.0.
Initialise a new Node object.
Parameters
* ident (int) - Unique identifier for the node
e latitude (float)— Nodes’s latitude
* longitude (float)— Node’s longitude
* visible (bool)— Whether the node is visible
* user (str)— User who logged the node
* timestamp (str)— The date and time a node was logged
* tags (dict) — Tags associated with the node

fetch area_osm (distance)
Fetch, and import, an OSM region.

Parameters distance (int)— Boundary distance in kilometres
Returns All the data OSM has on a region imported for use
Return type Osm

get_area_url (distance)
Generate URL for downloading OSM data within a region.

Parameters distance (int)— Boundary distance in kilometres
Returns

URL that can be used to fetch the OSM data within distance of location
Return type str

static parse_elem (element)
Parse a OSM node XML element.

Parameters element (etree.Element)— XML Element to parse
Returns Object representing parsed element

Return type Node

38 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

upoints, Release 0.12.2

toosm ()
Generate a OSM node element subtree.

Returns OSM node element
Return type etree.Element

class upoints.osm.Osm (osm_file=None)
Bases: upoints.point.Points

Class for representing an OSM region.
New in version 0.9.0.
Initialise a new Osm object.

export_osm_file()
Generate OpenStreetMap element tree from Osm.

import_locations (osm_file)
Import OSM data files.

import_locations () returns a list of Node and Way objects.

It expects data files conforming to the OpenStreetMap 0.5 DTD, which is XML such as:

<?xml version="1.0" encoding="UTF-8"7?>
<osm version="0.5" generator="upoints/0.9.0">
<node id="0" lat="52.015749" lon="-0.221765"
—timestamp="2008-01-25T12:52:11+00:00" />
<node id="1" 1lat="52.015761" lon="-0.221767"
—01-25T12:53:00+00:00">
<tag k="created_by" v="hand"
<tag k="highway" v="crossing"
</node>
<node id="2" 1lat="52.015754" lon="-0.221766"
—timestamp="2008-01-25T12:52:30+00:00">

/>
/>

<tag k="amenity" v="pub" />

</node>

<way 1d="0" visible="true" timestamp="2008-0
<nd ref="0" />
<nd ref="1" />
<nd ref="2" />
<tag k="ref" v="My Way" />
<tag k="highway" v="primary" />

</way>

</osm>

user="jnrowe" visible="true" |

visible="true" timestamp="2008-

user="jnrowe" visible="true"

1-25T13:00:00+0000">

The reader uses the Element Tree module, so should be very fast when importing data. The above file
processed by import_locations () will return the following Osm object:

Osm ([

Node (0, 52.015749, -0.221765, True, "jnrowe",
utils.Timestamp (2008, 1, 25, 12, 52, 11), None),

Node (1, 52.015761, -0.221767, True,
utils.Timestamp (2008, 1, 25, 12, 53), None,
{"created_by": "hand", "highway": "crossing"}),

Node (2, 52.015754, -0.221766, True, "jnrowe",
utils.Timestamp (2008, 1, 25, 12, 52, 30),
{"amenity": "pub"}),

Way (0, [0, 1, 2], True, None,

(continues on next page)

1.8. APl documentation

39

http://wiki.openstreetmap.org/wiki/OSM_Protocol_Version_0.5/DTD

upoints, Release 0.12.2

(continued from previous page)

utils.Timestamp (2008, 1, 25, 13, 00),
{"ref": "My Way", "highway": "primary"})l],
generator="upoints/0.9.0")

Parameters osm_file (iter)— OpenStreetMap data to read
Returns Nodes and ways from the data

Return type Osm

class upoints.osm.Way (ident, nodes, visible=False, user=None, timestamp=None, tags=None)

Bases: upoints.point.Points

Class for representing a way element from OSM data files.

New in version 0.9.0.

Initialise a new Way object.

Parameters

* ident (int) - Unique identifier for the way
* nodes (list of str)-—Identifiers of the nodes that form this way
* visible (bool)— Whether the way is visible
* user (str)— User who logged the way
* timestamp (st r)— The date and time a way was logged
* tags (dict) — Tags associated with the way

static parse_elem (element)
Parse a OSM way XML element.

Parameters element (etree.Element)— XML Element to parse
Returns Way object representing parsed element
Return type Way

toosm ()
Generate a OSM way element subtree.

Returns OSM way element

Return type etree.Element

upoints.osm.get_area_url (location, distance)

Generate URL for downloading OSM data within a region.

This function defines a boundary box where the edges touch a circle of distance kilometres in radius. It is
important to note that the box is neither a square, nor bounded within the circle.

The bounding box is strictly a trapezoid whose north and south edges are different lengths, which is longer is
dependant on whether the box is calculated for a location in the Northern or Southern hemisphere. You will get
a shorter north edge in the Northern hemisphere, and vice versa. This is simply because we are applying a flat
transformation to a spherical object, however for all general cases the difference will be negligible.

Parameters
* location (Point) — Centre of the region

* distance (int) - Boundary distance in kilometres

40

Chapter 1. Contents

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int

upoints, Release 0.12.2

Returns
URL that can be used to fetch the OSM data within distance of location

Return type str

point

point - Classes for working with locations on Earth.

class upoints.point.KeyedPoints (points=None, parse=False, units="metric’)
Bases: dict

Class for representing a keyed group of Point objects.
New in version 0.2.0.
Initialise a new KeyedPoints object.
Parameters
e points (bool)— Point objects to wrap
* points — Whether to attempt import of points
* units (str) - Unit type to be used for distances when parsing string locations

bearing (order, format="numeric’)
Calculate bearing between locations.

Parameters

e order (1ist) - Order to process elements in

» format (str)— Format of the bearing string to return
Returns Bearing between points in series
Return type list of float

destination (bearing, distance)
Calculate destination locations for given distance and bearings.

Parameters
* bearing (f1oat)— Bearing to move on in degrees
e distance (float)— Distance in kilometres

distance (order, method="haversine’)
Calculate distances between locations.

Parameters

* order (1ist)— Order to process elements in

¢ method (st r)— Method used to calculate distance
Returns Distance between points in order
Return type list of float

final_bearing (order, format="numeric’)
Calculate final bearing between locations.

Parameters

e order (1ist)— Order to process elements in

1.8. APl documentation 41

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list

upoints, Release 0.12.2

* format (str)— Format of the bearing string to return
Returns Bearing between points in series
Return type list of float

forward (bearing, distance)
Calculate destination locations for given distance and bearings.

Parameters
* bearing (float)— Bearing to move on in degrees
e distance (f1oat) - Distance in kilometres

import_locations (locations)
Import locations from arguments.

Parameters locations (1ist of 2-tuple of str)- Identifiers and locations

inverse (order)
Calculate the inverse geodesic between locations.

Parameters order (11ist)— Order to process elements in
Returns

Bearing and distance between points in series
Return type list of 2-tuple of float

midpoint (order)
Calculate the midpoint between locations.

Parameters order (11ist)— Order to process elements in
Returns Midpoint between points in series
Return type list of Point

range (location, distance)
Test whether locations are within a given range of the first.

Parameters

* location (Point) - Location to test range against

e distance (float)— Distance to test location is within
Returns Objects within specified range
Return type list of Point

sun_events (date=None, zenith=None)
Calculate sunrise/sunset times for locations.

Parameters
* date (datetime.date)— Calculate rise or set for given date
e zenith (str) - Calculate rise/set events, or twilight times
Returns
The time for the sunrise and sunset events for each point

Return type list of 2-tuple of datetime.datetime

42 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/datetime.html#datetime.date
https://docs.python.org/3/library/stdtypes.html#str

upoints, Release 0.12.2

sunrise (date=None, zenith=None)
Calculate sunrise times for locations.

Parameters
* date (datetime.date)— Calculate sunrise for given date
* zenith (str) - Calculate sunrise events, or end of twilight
Returns The time for the sunrise for each point
Return type list of datetime.datetime

sunset (date=None, zenith=None)
Calculate sunset times for locations.

Parameters
* date (datetime.date)— Calculate sunset for given date
* zenith (str)— Calculate sunset events, or start of twilight
Returns The time for the sunset for each point
Return type list of datetime.datetime

to_grid_locator (precision="square’)
Calculate Maidenhead locator for locations.

Parameters precision (str)— Precision with which generate locator string
Returns Maidenhead locator for each point
Return type list of str

class upoints.point.Point (latitude, longitude, units="metric’, angle="degrees’, timezone=0)
Bases: object

Simple class for representing a location on a sphere.
New in version 0.2.0.
Initialise a new Point object.
Parameters
* latitude (float, tuple or 1ist)-Location’s latitude
* longitude (float, tuple or 1list)-Location’slongitude
* angle (str)— Type for specified angles
* units (str)— Units type to be used for distances
e timezone (int) - Offset from UTC in minutes
Raises
* ValueError — Unknown value for angle
* ValueError — Unknown value for units
e ValueError — Invalid value for latitude or longitude

bearing (other, format="numeric’)
Calculate the initial bearing from self to other.

1.8. APl documentation

43

https://docs.python.org/3/library/datetime.html#datetime.date
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/datetime.html#datetime.date
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError

upoints, Release 0.12.2

Note: Applying common plane Euclidean trigonometry to bearing calculations suggests to us that the
bearing between point A to point B is equal to the inverse of the bearing from Point B to Point A, whereas
spherical trigonometry is much more fun. If the bearing method doesn’t make sense to you when
calculating return bearings there are plenty of resources on the web that explain spherical geometry.

Todo: Add Rhumb line calculation

Parameters

* other (Point) — Location to calculate bearing to

* format (str)—Format of the bearing string to return
Returns Initial bearing from self to other in degrees
Return type float
Raises ValueError — Unknown value for format

destination (bearing, distance)
Calculate the destination from self given bearing and distance.

Parameters

* bearing (float)— Bearing from self

e distance (float) - Distance from selfin self.units
Returns Location after travelling distance along bearing
Return type Point

distance (other, method="haversine’)
Calculate the distance from self to other.

As a smoke test this check uses the example from Wikipedia’s Great-circle distance entry of Nashville
International Airport to Los Angeles International Airport, and is correct to within 2 kilometres of the
calculation there.

Parameters
e other (Point) - Location to calculate distance to
e method (st r)— Method used to calculate distance
Returns Distance between self and other in units
Return type float
Raises ValueError — Unknown value for method

final_bearing (other, format="numeric’)
Calculate the final bearing from self to other.

See also:

bearing

Parameters

* other (Point) — Location to calculate final bearing to

44 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
http://en.wikipedia.org/wiki/Great-circle_distance
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/exceptions.html#ValueError

upoints, Release 0.12.2

* format (str)— Format of the bearing string to return
Returns Final bearing from self to other in degrees

Return type float
Raises ValueError — Unknown value for format

forward (bearing, distance)
Calculate the destination from self given bearing and distance.

Parameters
* bearing (f1oat)— Bearing from self

e distance (float)— Distance from self in self.units
Returns Location after travelling distance along bearing
Return type Point

inverse (other)
Calculate the inverse geodesic from self to other.

Parameters other (Point) — Location to calculate inverse geodesic to
Returns Bearing and distance from self to other
Return type tuple of float objects

midpoint (other)
Calculate the midpoint from self to other.

See also:

bearing
Parameters other (Point)— Location to calculate midpoint to
Returns Great circle midpoint from self to other

Return type Point

sun_events (date=None, zenith=None)
Calculate the sunrise time for a Point object.

See also:

utils.sun_rise_set

Parameters
* date (datetime.date)— Calculate rise or set for given date

* zenith (str)— Calculate rise/set events, or twilight times

Returns
The time for the given events in the specified timezone

Return type tuple of datetime.datetime

sunrise (date=None, zenith=None)
Calculate the sunrise time for a Point object.

See also:

1.8. APl documentation

45

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/datetime.html#datetime.date
https://docs.python.org/3/library/stdtypes.html#str

upoints, Release 0.12.2

utils.sun_rise_set

Parameters
* date (datetime.date)— Calculate rise or set for given date
e zenith (str) - Calculate rise/set events, or twilight times
Returns
The time for the given event in the specified timezone
Return type datetime.datetime
sunset (date=None, zenith=None)
Calculate the sunset time for a Point object.
See also:

utils.sun_rise_set

Parameters
* date (datetime.date)— Calculate rise or set for given date
e zenith (str) - Calculate rise/set events, or twilight times

Returns
The time for the given event in the specified timezone

Return type datetime.datetime

to_grid_locator (precision="square’)
Calculate Maidenhead locator from latitude and longitude.

Parameters precision (str)— Precision with which generate locator string

Returns Maidenhead locator for latitude and longitude

Return type str

class upoints.point.Points (points=None, parse=False, units="metric’)
Bases: 1ist

Class for representing a group of Point objects.
New in version 0.2.0.
Initialise a new Points object.
Parameters
* points (list of Point)- Point objects to wrap
* parse (bool)— Whether to attempt import of points
* units (str)— Unit type to be used for distances when parsing string locations

bearing (format="numeric’)
Calculate bearing between locations.

Parameters format (st r)— Format of the bearing string to return
Returns Bearing between points in series

Return type list of float

46 Chapter 1

. Contents

https://docs.python.org/3/library/datetime.html#datetime.date
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.date
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

upoints, Release 0.12.2

destination (bearing, distance)
Calculate destination locations for given distance and bearings.

Parameters
* bearing (f1oat)— Bearing to move on in degrees
e distance (f1oat) - Distance in kilometres
Returns Points shifted by distance and bearing
Return type list of Point

distance (method="haversine’)
Calculate distances between locations.

Parameters method (st r)— Method used to calculate distance
Returns Distance between points in series
Return type list of float

final_bearing (format="numeric’)
Calculate final bearing between locations.

Parameters format (st r)— Format of the bearing string to return
Returns Bearing between points in series
Return type list of float

forward (bearing, distance)
Calculate destination locations for given distance and bearings.

Parameters
* bearing (float)— Bearing to move on in degrees
* distance (f1oat)— Distance in kilometres
Returns Points shifted by distance and bearing
Return type list of Point

import_locations (locations)
Import locations from arguments.

Parameters locations (1ist of str or tuple)- Location identifiers

inverse ()
Calculate the inverse geodesic between locations.

Returns
Bearing and distance between points in series
Return type list of 2-tuple of float

midpoint ()
Calculate the midpoint between locations.

Returns Midpoint between points in series
Return type list of Point

range (location, distance)
Test whether locations are within a given range of location.

Parameters

1.8.

API documentation

47

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple

upoints, Release 0.12.2

* location (Point) — Location to test range against

e distance (float) - Distance to test location is within
Returns Points within range of the specified location
Return type list of Point

sun_events (date=None, zenith=None)
Calculate sunrise/sunset times for locations.

Parameters

* date (datetime.date)— Calculate rise or set for given date

e zenith (str)— Calculate rise/set events, or twilight times
Returns

The time for the sunrise and sunset events for each point
Return type list of 2-tuple of datetime.datetime

sunrise (date=None, zenith=None)
Calculate sunrise times for locations.

Parameters
* date (datetime.date)— Calculate sunrise for given date
* zenith (str) — Calculate sunrise events, or end of twilight
Returns The time for the sunrise for each point
Return type list of datetime.datetime

sunset (date=None, zenith=None)
Calculate sunset times for locations.

Parameters
* date (datetime.date)— Calculate sunset for given date
e zenith (str)— Calculate sunset events, or start of twilight
Returns The time for the sunset for each point
Return type list of datetime.datetime

to_grid_locator (precision="square’)
Calculate Maidenhead locator for locations.

Parameters precision (str)— Precision with which generate locator string
Returns Maidenhead locator for each point
Return type list of str

class upoints.point.TimedPoint (latitude, longitude, units=’metric’, angle=’degrees’, time-

zone=0, time=None)
Bases: upoints.point.Point

Class for representing a location with an associated time.
New in version 0.12.0.
Initialise a new TimedPoint object.

Parameters

48 Chapter 1. Contents

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/datetime.html#datetime.date
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/datetime.html#datetime.date
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/datetime.html#datetime.date
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

upoints, Release 0.12.2

e latitude (float, tuple or 1ist)- Location’s latitude

* longitude (float, tuple or 1ist)-Location’s longitude
* angle (str)— Type for specified angles

* units (str)— Units type to be used for distances

e timezone (int) - Offset from UTC in minutes

e time (datetime.datetime)— Time associated with the location

class upoints.point.TimedPoints (points=None, parse=False, units="metric’)
Bases: upoints.point.Points

Initialise a new Points object.
Parameters
* points (list of Point)- Point objects to wrap
* parse (bool)— Whether to attempt import of points
* units (st r)— Unit type to be used for distances when parsing string locations

speed ()
Calculate speed between Points.

Returns Speed between Point elements in km/h

Return type list of float

trigpoints

trigpoints - Imports trigpoint marker files.

class upoints.trigpoints.Trigpoint (latitude, longitude, altitude, name=None, identity=None)
Bases: upoints.point.Point

Class for representing a location from a trigpoint marker file.

Warning: Although this class stores and presents the representation of altitude it doesn’t take it in to
account when making calculations. For example, consider a point at the base of Mount Everest and a point
at the peak of Mount Everest the actual distance travelled between the two would be considerably larger than
the reported value calculated at ground level.

New in version 0.2.0.
Initialise a new Trigpoint object.
Parameters
e latitude (float)— Location’s latitude
* longitude (f1oat) - Location’s longitude
e altitude (float) - Location’s altitude
¢ name (st r)— Name for location

* identity (int)— Database identifier, if known

1.8. APl documentation 49

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

upoints, Release 0.12.2

class upoints.trigpoints.Trigpoints (marker_file=None)

tzdata

Bases: upoints.point.KeyedPoints

Class for representing a group of Trigpoint objects.
New in version 0.5.1.

Initialise a new Trigpoints object.

import_locations (marker_file)

Import trigpoint database files.

import_locations () returns a dictionary with keys containing the trigpoint identifier, and values
that are Trigpoint objects.

It expects trigpoint marker files in the format provided at alltrigs-wgs84.txt, which is the following format:

H SOFTWARE NAME & VERSION
I GPSU 4.04,
S SymbolSet=0

W,500936,N52.066035,W000.281449, 37.0,Broom Farm
W,501097,N52.010585,W000.173443, 97.0,Bygrave
W,505392,N51.910886,W000.186462, 136.0,Sish Lane

Any line not consisting of 6 comma separated fields will be ignored. The reader uses the csv
module, so alternative whitespace formatting should have no effect. The above file processed by
import_locations () will return the following dict object:

{500936: point.Point (52.066035, -0.281449, 37.0, "Broom Farm"),
501097: point.Point (52.010585, -0.173443, 97.0, "Bygrave"),
505392: point.Point (51.910886, -0.186462, 136.0, "Sish Lane")}

Parameters marker_ file (iter)— Trigpoint marker data to read
Returns Named locations with Trigpoint objects
Return type dict

Raises ValueError —Invalid value for marker_file

tzdata - Imports timezone data files from UNIX zoneinfo.

class upoints.tzdata.Zone (location, country, zone, comments=None)

Bases: upoints.point.Point
Class for representing timezone descriptions from zoneinfo data.
New in version 0.6.0.

Initialise a new Zone object.

Parameters
* location (str)— Primary location in ISO 6709 format
* country (str)— Location’s ISO 3166 country code
* zone (str) - Location’s zone name as used in zoneinfo database

e comments (!1ist)— Location’s alternate names

50

Chapter 1. Contents

http://www.haroldstreet.org.uk/trigpoints/
https://docs.python.org/3/library/csv.html#module-csv
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list

upoints, Release 0.12.2

class upoints.tzdata.Zones (zone_file=None)
Bases: upoints.point.Points

Class for representing a group of Zone objects.
New in version 0.6.0.
Initialise a new Zones object.

dump_zone_file ()
Generate a zoneinfo compatible zone description table.

Returns zoneinfo descriptions
Return type list

import_locations (zone_file)
Parse zoneinfo zone description data files.

import_locations () returns a list of Zone objects.

It expects data files in one of the following formats:

AN +1211-06900 America/Curacao
AO -0848+01314 Africa/Luanda
AQ -7750+16636 Antarctica/McMurdo McMurdo Station,

Ross Island

Files containing the data in this format can be found in the zone.tab file that is normally found in
/usr/share/zoneinfo on UNIX-like systems, or from the standard distribution site.

When processed by import_locations () a 1ist object of the following style will be returned:

[Zone (None, None, "AN", "America/Curacao", None),

Zone (None, None, "AO", "Africa/Luanda", None),

Zone (None, None, "AO", "Antartica/McMurdo",
["McMurdo Station", "Ross Island"])]

Parameters zone_ file (iter)- zone.tab data to read
Returns Locations as Zone objects
Return type list

Raises FileFormatError — Unknown file format

utils

utils - Support code for upoints.

upoints.utils.BODIES = {'Ceres': 475, 'Earth': 6367, 'Eris':

Body radii of various solar system objects

upoints.utils.BODY_RADIUS = 6367
Default body radius to use for calculations

exception upoints.utils.FileFormatError (site=None)
Bases: exceptions.ValueError

Error object for data parsing error.
New in version 0.3.0.

Initialise anew FileFormatError object.

1200, 'Jupiter':

1.8. APl documentation

51

69911,

https://docs.python.org/3/library/stdtypes.html#list
ftp://elsie.nci.nih.gov/pub/
https://docs.python.org/3/library/stdtypes.html#list

upoints, Release 0.12.2

Parameters site (str)— Remote site name to display in error message

upoints.utils.LONGITUDE_FIELD = 20
Maidenhead locator constants

upoints.utils.NAUTICAL_MILE = 1.852
Number of kilometres per nautical mile

upoints.utils.STATUTE_MILE = 1.609
Number of kilometres per statute mile

class upoints.utils.Timestamp
Bases: datetime.datetime

Class for representing an OSM timestamp value.

isoformat ()
Generate an ISO 8601 formatted time stamp.

Returns ISO 8601 formatted time stamp
Return type str

static parse_isoformat (timestamp)
Parse an ISO 8601 formatted time stamp.

Parameters timestamp (st r)— Timestamp to parse
Returns Parsed timestamp
Return type Timestamp

class upoints.utils.TzOffset (1zstring)
Bases: datetime.tzinfo

Time offset from UTC.
Initialise a new TzOffset object.
Args:: tzstring (str): ISO 8601 style timezone definition

as_timezone ()
Create a human-readable timezone string.

Returns Human-readable timezone definition
Return type str

dst (dt=None)
Daylight Savings Time offset.

Note: This method is only for compatibility with the t zinfo interface, and does nothing

Parameters dt (any) — For compatibility with parent classes

utcoffset (di=None)
Return the offset in minutes from UTC.

Parameters dt (any) — For compatibility with parent classes

upoints.utils.ZENITH = {None: -0.8333333333333334, 'astronomical': -18, 'civil':

Sunrise/-set mappings from name to angle

52 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/datetime.html#datetime.datetime
http://www.cl.cam.ac.uk/~mgk25/iso-time.html
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/datetime.html#datetime.tzinfo
http://www.cl.cam.ac.uk/~mgk25/iso-time.html
https://docs.python.org/3/library/stdtypes.html#str

upoints, Release 0.12.2

upoints.utils.angle_to_distance (angle, units="metric’)
Convert angle in to distance along a great circle.

Parameters
* angle (f1oat)— Angle in degrees to convert to distance
* units (str)— Unit type to be used for distances
Returns Distance in units
Return type float
Raises ValueError — Unknown value for units

upoints.utils.angle_to_name (angle, segments=8, abbr=False)
Convert angle in to direction name.

Parameters
* angle (float)— Angle in degrees to convert to direction name
* segments (int)— Number of segments to split compass in to
* abbr (bool) — Whether to return abbreviated direction string

Returns Direction name for angle

Return type str

upoints.utils.calec_radius (latitude, ellipsoid="WGS84’)
Calculate earth radius for a given latitude.

This function is most useful when dealing with datasets that are very localised and require the accuracy of an
ellipsoid model without the complexity of code necessary to actually use one. The results are meant to be used
as a BODY_RADIUS replacement when the simple geocentric value is not good enough.

The original use for calc_radius is to set a more accurate radius value for use with trigpointing databases
that are keyed on the OSGB36 datum, but it has been expanded to cover other ellipsoids.

Parameters

e latitude (float) - Latitude to calculate earth radius for

* ellipsoid (tuple of float)— Ellipsoid model to use for calculation
Returns Approximated Earth radius at the given latitude
Return type float

upoints.utils.distance_to_angle (distance, units="metric’)
Convert a distance in to an angle along a great circle.

Parameters
* distance (float)— Distance to convert to degrees
* units (str)— Unit type to be used for distances
Returns Angle in degrees
Return type float
Raises ValueError — Unknown value for units

upoints.utils.dump_xearth_markers (markers, name="identifier’)
Generate an Xearth compatible marker file.

1.8. APl documentation 53

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/exceptions.html#ValueError

upoints, Release 0.12.2

dump_xearth_markers () writes a simple Xearth marker file from a dictionary of trigpoints.
Trigpoint objects.

It expects a dictionary in one of the following formats. For support of Trigpoint that is:

{500936: Trigpoint (52.066035, -0.281449, 37.0, "Broom Farm"),
501097: Trigpoint (52.010585, -0.173443, 97.0, "Bygrave"),
505392: Trigpoint (51.910886, -0.186462, 136.0, "Sish Lane")}

And generates output of the form:

52.066035 -0.281449 "500936" # Broom Farm, alt 37m
52.010585 -0.173443 "501097" # Bygrave, alt 97m
51.910886 -0.186462 "205392" # Sish Lane, alt 136m

Or similar to the following if the name parameter is set to name:

52.066035 —-0.281449 "Broom Farm" # 500936 alt 37m
52.010585 -0.173443 "Bygrave" # 501097 alt 97m
51.910886 —-0.186462 "Sish Lane" # 205392 alt 136m

Point objects should be provided in the following format:

{"Broom Farm": Point (52.066035, -0.281449),
"Bygrave": Point (52.010585, -0.173443),
"Sish Lane": Point (51.910886, -0.186462)}

And generates output of the form:

52.066035 -0.281449 "Broom Farm"
52.010585 -0.173443 "Bygrave"
51.910886 —-0.186462 "Sish Lane"

Note: xplanet also supports xearth marker files, and as such can use the output from this function.

See also:

upoints.xearth. Xearths.import_locations

Parameters
* markers (dict) — Dictionary of identifier keys, with Trigpoint values
* name (st r)— Value to use as Xearth display string

Returns List of strings representing an Xearth marker file

Return type list

Raises ValueError — Unsupported value for name

upoints.utils.element_creator (namespace=None)
Create a simple namespace-aware objectify element creator.
Parameters namespace (st r)— Namespace to work in
Returns Namespace-aware element creator

Return type function

54 Chapter 1. Contents

http://hewgill.com/xearth/original/
http://xplanet.sourceforge.net/
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str

upoints, Release 0.12.2

upoints.utils.from_grid_locator (locator)
Calculate geodesic latitude/longitude from Maidenhead locator.

Parameters locator (str)— Maidenhead locator string
Returns Geodesic latitude and longitude values
Return type tuple of float
Raises
* ValueError — Incorrect grid locator length
* ValueError — Invalid values in locator string

upoints.utils.from iso6709 (coordinates)
Parse ISO 6709 coordinate strings.

This function will parse ISO 6709-1983(E) “Standard representation of latitude, longitude and altitude for geo-
graphic point locations” elements. Unfortunately, the standard is rather convoluted and this implementation is
incomplete, but it does support most of the common formats in the wild.

The W3C has a simplified profile for ISO 6709 in Latitude, Longitude and Altitude format for geospatial in-
formation. It unfortunately hasn’t received widespread support as yet, but hopefully it will grow just as the
simplified ISO 8601 profile has.

See also:

to_is06709

Parameters coordinates (str)—ISO 6709 coordinates string
Returns
A tuple consisting of latitude and longitude in degrees, along with the elevation in metres

Return type tuple
Raises

* ValueError — Input string is not ISO 6709 compliant

* ValueError — Invalid value for latitude

* ValueError — Invalid value for longitude

upoints.utils.parse_location (location)
Parse latitude and longitude from string location.

Parameters location (st r)— String to parse
Returns Latitude and longitude of location
Return type tuple of float

upoints.utils.prepare_csv_read (data, field_names, *args, **kwargs)
Prepare various input types for CSV parsing.

Parameters

e data (iter)— Data to read

* field names (tuple of str)- Ordered names to assign to fields
Returns CSV reader suitable for parsing

Return type csv.DictReader

1.8. APl documentation 55

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
http://www.w3.org/2005/Incubator/geo/Wiki/LatitudeLongitudeAltitude
http://www.w3.org/2005/Incubator/geo/Wiki/LatitudeLongitudeAltitude
http://www.w3.org/TR/NOTE-datetime
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/csv.html#csv.DictReader

upoints, Release 0.12.2

Raises TypeError — Invalid value for data

upoints.utils.prepare_read (data, method="readlines’, mode='r’)
Prepare various input types for parsing.

Parameters
e data (iter)— Data to read
* method (str)— Method to process data with
* mode (st r)— Custom mode to process with, if data is a file
Returns List suitable for parsing
Return type list
Raises TypeError — Invalid value for data

upoints.utils.prepare_xml_read (data, objectify=False)
Prepare various input types for XML parsing.

Parameters
* data (iter) - Data to read
* objectify (bool)— Parse using Ixml’s objectify data binding
Returns Tree suitable for parsing
Return type etree.ElementTree
Raises TypeError — Invalid value for data

upoints.utils.repr_assist (obj, remap=None)
Helper function to simplify ___repr__ methods.

Parameters

* obj - Object to pull argument values for

* remap (dict)— Argument pairs to remap before output
Returns Self-documenting representation of value
Return type str

upoints.utils.sun_events (latitude, longitude, date, timezone=0, zenith=None)
Convenience function for calculating sunrise and sunset.

Civil twilight starts/ends when the Sun’s centre is 6 degrees below the horizon.
Nautical twilight starts/ends when the Sun’s centre is 12 degrees below the horizon.
Astronomical twilight starts/ends when the Sun’s centre is 18 degrees below the horizon.
Parameters

e latitude (float)— Location’s latitude

* longitude (float) - Location’s longitude

* date (datetime.date)— Calculate rise or set for given date

* timezone (int) - Offset from UTC in minutes

* zenith (str) - Calculate rise/set events, or twilight times

Returns

56 Chapter 1

. Contents

https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/datetime.html#datetime.date
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

upoints, Release 0.12.2

The time for the given events in the specified timezone
Return type tuple of datetime.time

upoints.utils.sun_rise_set (latitude, longitude, date, mode="rise’, timezone=0, zenith=None)
Calculate sunrise or sunset for a specific location.

This function calculates the time sunrise or sunset, or optionally the beginning or end of a specified twilight
period.

Source:

Almanac for Computers, 1990
published by Nautical Almanac Office
United States Naval Observatory
Washington, DC 20392

Parameters

e latitude (float) - Location’s latitude

* longitude (float)— Location’s longitude

* date (datetime.date)— Calculate rise or set for given date

e mode (st r)— Which time to calculate

e timezone (int) - Offset from UTC in minutes

* zenith (str) — Calculate rise/set events, or twilight times
Returns

The time for the given event in the specified timezone, or None if the event doesn’t occur on
the given date

Return type datetime.time or None
Raises ValueError — Unknown value for mode
upoints.utils.to_dd (degrees, minutes, seconds=0)
Convert degrees, minutes and optionally seconds to decimal angle.
Parameters
* degrees (f1oat)— Number of degrees
* minutes (f1oat)— Number of minutes
e seconds (float)— Number of seconds
Returns Angle converted to decimal degrees
Return type float

upoints.utils.to_dms (angle, style="dms’)
Convert decimal angle to degrees, minutes and possibly seconds.

Parameters

* angle (float)— Angle to convert

* style (str)— Return fractional or whole minutes values
Returns Angle converted to degrees, minutes and possibly seconds

Return type tuple of int

1.8. APl documentation 57

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/datetime.html#datetime.date
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/datetime.html#datetime.time
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str

upoints, Release 0.12.2

Raises ValueError — Unknown value for style

upoints.utils.to_grid_locator (latitude, longitude, precision="square’)
Calculate Maidenhead locator from latitude and longitude.

Parameters

e latitude (float)— Position’s latitude

* longitude (float) - Position’s longitude

* precision (str)— Precision with which generate locator string
Returns Maidenhead locator for latitude and longitude

Return type str
Raise: ValueError: Invalid precision identifier ValueError: Invalid latitude or longitude value
upoints.utils.to_iso6709 (latitude, longitude, altitude=None, format="dd’, precision=4)

Produce ISO 6709 coordinate strings.

This function will produce ISO 6709-1983(E) “Standard representation of latitude, longitude and altitude for
geographic point locations” elements.

See also:

from_is06709

Parameters

e latitude (float)— Location’s latitude

* longitude (float)— Location’s longitude

e altitude (float) - Location’s altitude

* format (st r)— Format type for string

* precision (int) - Latitude/longitude precision
Returns ISO 6709 coordinates string
Return type str
Raises ValueError — Unknown value for format

upoints.utils.value_or_empty (value)
Return an empty string for display when value is None.

Parameters value (str)— Value to prepare for display
Returns String representation of value

Return type str

weather_stations

weather_stations - Imports weather station data files.

class upoints.weather_stations.Station (alt_id, name, state, country, wmo, latitude,
longitude, wua_latitude, ua_longitude, altitude,

ua_altitude, rbsn)
Bases: upoints.trigpoints.Trigpoint

58 Chapter 1. Contents

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

upoints, Release 0.12.2

Class for representing a weather station from a NOAA data file.

New in version 0.2.0.

Initialise a new Stat ion object.

Parameters

e alt_id (str) - Alternate location identifier
e name (str)— Station’s name
* state (st r)— State name, if station is in the US
* country (str)— Country name
* wmo (int)— WMO region code
e latitude (float)— Station’s latitude
* longitude (float) — Station’s longitude
* ua_latitude (float)— Station’s upper air latitude
* ua_longitude (float)— Station’s upper air longitude
* altitude (int) - Station’s elevation
* ua_altitude (int) - Station’s upper air elevation
* rbsn (bool) — True if station belongs to RSBN

class upoints.weather_stations.Stations (data=None, index="WMQO’)
Bases: upoints.point.KeyedPoints

Class for representing a group of Station objects.
New in version 0.5.1.
Initialise a new Stations object.

import_locations (data, index="WMO’)
Parse NOAA weather station data files.

import_locations () returns a dictionary with keys containing either the WMO or ICAO identifier,
and values that are Station objects that describes the large variety of data exported by NOAA.

It expects data files in one of the following formats:

00;000;PABL; Buckland, Buckland Airport;AK;United States;4;65-58-56N;161-09~
—07W;;;:7;;

01;001;ENJA;Jan Mayen; ;Norway; 6;70-56N; 008-40W; 70-56N; 008-40W; 10; 9;P
01;002; ————;Grahuken; ;Norway; 6; 79-47N; 014-28E; ;;;15;

or:

AYMD; 94; 014;Madang; ; Papua New Guinea;5;05-13S;145-47E;05-13S;145-47E;3;5;P
AYMO; ——; ———;Manus Island/Momote;;Papua New Guinea;5;02-03-43S;147-25-27E;;;4;;
AYPY; 94;035;Moresby; ;Papua New Guinea;5;09-26S;147-13E;09-26S5;147-13E;38;49;P

Files containing the data in this format can be downloaded from the NOA A’s site in their station location
page.

WMO indexed files downloaded from the NOAA site when processed by import_locations () will
return dict object of the following style:

1.8. APl documentation 59

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
http://weather.noaa.gov/
http://weather.noaa.gov/tg/site.shtml
http://weather.noaa.gov/tg/site.shtml

upoints, Release 0.12.2

{'00000"': Station('PABL', 'Buckland, Buckland Airport', 'AK',
'United States', 4, 65.982222. -160.848055, None,
None, 7, False),
'01001"; Station('ENJA', Jan Mayen, None, 'Norway', 6, 70.933333,
-7.333333, 70.933333, -7.333333, 10, 9, True),
'01002'": Station (None, 'Grahuken', None, 'Norway', 6, 79.783333,
13.533333, None, None, 15, False)}

And dict objects such as the following will be created when ICAO indexed data files are processed:

{"AYMD': Station("94", "014", "Madang", None, "Papua New Guinea",
5, -5.216666, 145.783333, -5.216666,
145.78333333333333, 3, 5, True,

'"AYMO': Station (None, None, "Manus Island/Momote", None,
"Papua New Guinea", 5, -2.061944, 147.424166,
None, None, 4, False,

'"AYPY': Station("94", "035", "Moresby", None, "Papua New Guinea",
5, =-9.433333, 147.216667, -9.433333, 147.216667,
38, 49, True}

Parameters

e data (iter) - NOAA station data to read

* index (str) — The identifier type used in the file
Returns WMO locations with Station objects
Return type dict

Raises FileFormatError — Unknown file format

xearth

xearth - Imports xearth-style marker files.

class upoints.xearth.Xearth (latitude, longitude, comment=None)
Bases: upoints.point.Point

Class for representing a location from a Xearth marker.
New in version 0.2.0.
Initialise a new Xearth object.
Parameters
e latitude (float)— Location’s latitude
* longitude (float)— Location’s longitude
e comment (st r)— Comment for location

class upoints.xearth.Xearths (marker_file=None)
Bases: upoints.point.KeyedPoints

Class for representing a group of Xearth objects.
New in version 0.5.1.

Initialise a new Xearths object.

60 Chapter 1

. Contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str

upoints, Release 0.12.2

import_locations (marker_file)
Parse Xearth data files.

import_locations () returns a dictionary with keys containing the xearth name, and values consist-
ing of a Xearth object and a string containing any comment found in the marker file.

It expects Xearth marker files in the following format:

Comment

52.015 -0.221 "Home" # James Rowe's home
52.6333 -2.5 "Telford"

Any empty line or line starting with a ‘#° is ignored. All data lines are whitespace-normalised, so ac-
tual layout should have no effect. The above file processed by import_locations () will return the
following dict object:

{'Home': point.Point (52.015, -0.221, "James Rowe's home"),
'Telford': point.Point (52.6333, -2.5, None)}

Note: This function also handles the extended xplanet marker files whose points can optionally contain
added xplanet specific keywords for defining colours and fonts.

Parameters marker_file (iter)— Xearth marker data to read
Returns Named locations with optional comments

Return type dict

1.9 Glossary

GPS GPS (Global Positioning System)
Loran LORAN (LOng RAnge Navigation)

1.10 Release HOWTO

1.10.1 Test

In the general case tests can be run via pytest:

$ pytest tests

When preparing a release it is important to check that upoints works with all currently supported Python versions,
and that the documentation is correct.

1.10.2 Prepare release

With the tests passing, perform the following steps

» Update the version data in upoints/_version.py

1.9. Glossary 61

http://hewgill.com/xearth/original/
http://xplanet.sourceforge.net/
https://docs.python.org/3/library/stdtypes.html#dict

upoints, Release 0.12.2

* Update NEWS . rst, if there are any user visible changes
* Commit the release notes and version changes
* Create a signed tag for the release

¢ Push the changes, including the new tag, to the GitHub repository

1.10.3 Update PyPI

Create and upload the new release tarballs to PyPI:

$./setup.py sdist —--formats=bztar,gztar register upload --sign

Fetch the uploaded tarballs, and check for errors.

You should also perform test installations from PyPI, to check the experience upoint s users will have.

1.11 Todo

Todo: Description

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/upoints/checkouts/latest/upoints/edist.py:docstring
of upoints.edist. NumberedPoints.flight_plan, line 3.)

Todo: Add optional check for message length, on by default

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/upoints/checkouts/latest/upoints/nmea.py:docstring
of upoints.nmea.Locations.import_locations, line 47.)

Todo: Add Rhumb line calculation

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/upoints/checkouts/latest/upoints/point.py:docstring
of upoints.point.Point.bearing, line 12.)

62 Chapter 1. Contents

CHAPTER 2

Indices and tables

* genindex
* modindex

e search

63

upoints, Release 0.12.2

64 Chapter 2. Indices and tables

Python Module Index

u

upoints, 19
upoints.baken, 19
upoints.cellid, 20
upoints.cities, 22
upoints.edist, 23
upoints.geonames, 26
upoints.gpx, 28
upoints.kml, 32
upoints.nmea, 34
upoints.osm, 38
upoints.point, 41
upoints.trigpoints, 49
upoints.tzdata, 50
upoints.utils, 51
upoints.weather_stations, 58
upoints.xearth, 60

65

upoints, Release 0.12.2

66 Python Module Index

Index

A

angle_to_distance() (in module upoints.utils), 52
angle_to_name() (in module upoints.utils), 53
as_timezone() (upoints.utils. TzOffset method), 52

B

Baken (class in upoints.baken), 19

Bakens (class in upoints.baken), 20

bearing() (upoints.edist. NumberedPoints method), 24
bearing() (upoints.point.KeyedPoints method), 41
bearing() (upoints.point.Point method), 43

bearing() (upoints.point.Points method), 46

BODIES (in module upoints.utils), 51
BODY_RADIUS (in module upoints.utils), 51

C

calc_checksum() (in module upoints.nmea), 37
calc_radius() (in module upoints.utils), 53

Cell (class in upoints.cellid), 20

Cells (class in upoints.cellid), 21

Cities (class in upoints.cities), 22

City (class in upoints.cities), 23

D

data (upoints.edist.LocationsError attribute), 24
destination() (upoints.edist. NumberedPoints method), 25
destination() (upoints.point.KeyedPoints method), 41
destination() (upoints.point.Point method), 44
destination() (upoints.point.Points method), 46
display() (upoints.edist. NumberedPoints method), 25
distance() (upoints.edist. NumberedPoints method), 25
distance() (upoints.point.KeyedPoints method), 41
distance() (upoints.point.Point method), 44

distance() (upoints.point.Points method), 47
distance_to_angle() (in module upoints.utils), 53

dst() (upoints.utils. TzOffset method), 52
dump_xearth_markers() (in module upoints.utils), 53
dump_zone_file() (upoints.tzdata.Zones method), 51

E

element_creator() (in module upoints.utils), 54
export_gpx_file() (upoints.gpx.Routepoints method), 29
export_gpx_file() (upoints.gpx.Trackpoints method), 30
export_gpx_file() (upoints.gpx.Waypoints method), 31
export_kml_file() (upoints.kml.Placemarks method), 33
export_osm_file() (upoints.osm.Osm method), 39

F

fetch_area_osm() (upoints.osm.Node method), 38
FileFormatError, 51

final_bearing() (upoints.point.KeyedPoints method), 41
final_bearing() (upoints.point.Point method), 44
final_bearing() (upoints.point.Points method), 47

Fix (class in upoints.nmea), 34

flight_plan() (upoints.edist. NumberedPoints method), 25
forward() (upoints.point.KeyedPoints method), 42
forward() (upoints.point.Point method), 45

forward() (upoints.point.Points method), 47
from_grid_locator() (in module upoints.utils), 54
from_is06709() (in module upoints.utils), 55

function (upoints.edist.LocationsError attribute), 24

G

get_area_url() (in module upoints.osm), 40
get_area_url() (upoints.osm.Node method), 38
GPS, 61

import_locations() (upoints.baken.Bakens method), 20
import_locations() (upoints.cellid.Cells method), 21
import_locations() (upoints.cities.Cities method), 22
import_locations() (upoints.edist. NumberedPoints
method), 25
import_locations()
method), 27
import_locations() (upoints.gpx.Routepoints method), 29
import_locations() (upoints.gpx.Trackpoints method), 30
import_locations() (upoints.gpx.Waypoints method), 31

(upoints.geonames.Locations

67

upoints, Release 0.12.2

import_locations() (upoints.kml.Placemarks method), 33

import_locations() (upoints.nmea.Locations method), 34

import_locations() (upoints.osm.Osm method), 39

import_locations() (upoints.point.KeyedPoints method),
42

import_locations() (upoints.point.Points method), 47

import_locations() (upoints.trigpoints.Trigpoints
method), 50

import_locations() (upoints.tzdata.Zones method), 51

import_locations() (upoints.weather_stations.Stations
method), 59

import_locations() (upoints.xearth.Xearths method), 60

import_timezones_{file() (upoints.geonames.Locations
method), 28

inverse() (upoints.point.KeyedPoints method), 42

inverse() (upoints.point.Point method), 45

inverse() (upoints.point.Points method), 47

isoformat() (upoints.utils. Timestamp method), 52

K

KeyedPoints (class in upoints.point), 41

L

Location (class in upoints.geonames), 26

Locations (class in upoints.geonames), 27
Locations (class in upoints.nmea), 34
LocationsError (class in upoints.edist), 23
LONGITUDE_FIELD (in module upoints.utils), 52
Loran, 61

LoranPosition (class in upoints.nmea), 35

M

main() (in module upoints.edist), 26

midpoint() (upoints.point.KeyedPoints method), 42
midpoint() (upoints.point.Point method), 45

midpoint() (upoints.point.Points method), 47
MODE_INDICATOR (in module upoints.nmea), 36
mode_string() (upoints.nmea.LoranPosition method), 36
mode_string() (upoints.nmea.Position method), 36

N

name (upoints.edist. NumberedPoint attribute), 24
NAUTICAL_MILE (in module upoints.utils), 52
nmea_latitude() (in module upoints.nmea), 37
nmea_longitude() (in module upoints.nmea), 37
Node (class in upoints.osm), 38

NumberedPoint (class in upoints.edist), 24
NumberedPoints (class in upoints.edist), 24

O

Osm (class in upoints.osm), 39

P

parse_elem() (upoints.osm.Node static method), 38

parse_elem() (upoints.osm.Way static method), 40
parse_elements() (upoints.nmea.Fix static method), 34

parse_elements() (upoints.nmea.LoranPosition static
method), 36

parse_elements() (upoints.nmea.Position static method),
36

parse_elements() (upoints.nmea.Waypoint static method),
37

parse_isoformat() (upoints.utils. Timestamp static

method), 52
parse_latitude() (in module upoints.nmea), 37
parse_location() (in module upoints.utils), 55
parse_longitude() (in module upoints.nmea), 37
Placemark (class in upoints.kml), 32
Placemarks (class in upoints.kml), 33
Point (class in upoints.point), 43
Points (class in upoints.point), 46
Position (class in upoints.nmea), 36
prepare_csv_read() (in module upoints.utils), 55
prepare_read() (in module upoints.utils), 56
prepare_xml_read() (in module upoints.utils), 56

Q

quality_string() (upoints.nmea.Fix method), 34

R

range() (upoints.edist. NumberedPoints method), 25
range() (upoints.point.KeyedPoints method), 42
range() (upoints.point.Points method), 47
read_csv() (in module upoints.edist), 25
read_locations() (in module upoints.edist), 25
repr_assist() (in module upoints.utils), 56
Routepoint (class in upoints.gpx), 28

Routepoints (class in upoints.gpx), 29

S

speed() (upoints.point. TimedPoints method), 49
Station (class in upoints.weather_stations), 58
Stations (class in upoints.weather_stations), 59
STATUTE_MILE (in module upoints.utils), 52
sun_events() (in module upoints.utils), 56
sun_events() (upoints.edist. NumberedPoints method), 25
sun_events() (upoints.point.KeyedPoints method), 42
sun_events() (upoints.point.Point method), 45
sun_events() (upoints.point.Points method), 48
sun_rise_set() (in module upoints.utils), 57

sunrise() (upoints.point.KeyedPoints method), 42
sunrise() (upoints.point.Point method), 45

sunrise() (upoints.point.Points method), 48

sunset() (upoints.point.KeyedPoints method), 43
sunset() (upoints.point.Point method), 46

sunset() (upoints.point.Points method), 48

68

Index

upoints, Release 0.12.2

T

TEMPLATE (in module upoints.cities), 23
TimedPoint (class in upoints.point), 48
TimedPoints (class in upoints.point), 49
Timestamp (class in upoints.utils), 52

to_dd() (in module upoints.utils), 57

to_dms() (in module upoints.utils), 57
to_grid_locator() (in module upoints.utils), 58

to_grid_locator() (upoints.point.KeyedPoints method), 43
to_grid_locator() (upoints.point.Point method), 46
to_grid_locator() (upoints.point.Points method), 48

to_is06709() (in module upoints.utils), 58
tokml() (upoints.kml.Placemark method), 32
toosm() (upoints.osm.Node method), 38
toosm() (upoints.osm.Way method), 40
Trackpoint (class in upoints.gpx), 29
Trackpoints (class in upoints.gpx), 30
Trigpoint (class in upoints.trigpoints), 49
Trigpoints (class in upoints.trigpoints), 49

tz (in module upoints.geonames), 28
TzOffset (class in upoints.utils), 52

U

units (upoints.edist. NumberedPoint attribute), 24

upoints (module), 19

upoints.baken (module), 19
upoints.cellid (module), 20
upoints.cities (module), 22
upoints.edist (module), 23
upoints.geonames (module), 26
upoints.gpx (module), 28

upoints.kml (module), 32
upoints.nmea (module), 34
upoints.osm (module), 38
upoints.point (module), 41
upoints.trigpoints (module), 49
upoints.tzdata (module), 50
upoints.utils (module), 51
upoints.weather_stations (module), 58
upoints.xearth (module), 60
utcoffset() (upoints.utils. TzOffset method), 52

V

value_or_empty() (in module upoints.utils), 58

W

Way (class in upoints.osm), 40
Waypoint (class in upoints.gpx), 31
Waypoint (class in upoints.nmea), 37
Waypoints (class in upoints.gpx), 31

X

Xearth (class in upoints.xearth), 60

Xearths (class in upoints.xearth), 60

Z

ZENITH (in module upoints.utils), 52
Zone (class in upoints.tzdata), 50
Zones (class in upoints.tzdata), 50

Index

69

	Contents
	Geolocation and path cross
	The MERLIN system
	Cities and cities.py
	Pythons on a plane
	Trigpointing and point.py
	xearth and path cross
	edist
	API documentation
	Glossary
	Release HOWTO
	Todo

	Indices and tables
	Python Module Index

